Discrete-Continuum Transition in Modelling Nanomaterials

被引:2
|
作者
Pyrz, Ryszard [1 ]
Bochenek, Bogdan [2 ]
机构
[1] Aalborg Univ, Dept Mech Engn, Pontoppidanstr 101, DK-9220 Aalborg, Denmark
[2] Cracow Univ Technol, Inst Appl Mech, PL-31864 Krakow, Poland
来源
IUTAM SYMPOSIUM ON MODELLING NANOMATERIALS AND NANOSYSTEMS | 2009年 / 13卷
关键词
STRESS; SOLIDS; DYNAMICS; SIMULATIONS; ELASTICITY; DERIVATION; FORMULAS; LEVEL;
D O I
10.1007/978-1-4020-9557-3_8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present investigation we elaborate on the development of a second-order elastic deformation gradient in discrete/atomistic system. Whereas kinematics are typically characterized by the Cauchy-Bom rule that enforces homogeneous deformation, the second-order deformation gradient allows to capture highly nonhomogeneous deformations. This is particularly important in disordered molecular systems where nonaffine deformations are responsible for the mechanical behaviour of nanomaterials. The local inhomogeneity measure has been defined to determine variability of the deformation field of nanostructures under loading. Several application examples have been worked out comprising fullerene structures, diamond plates and nanowires.
引用
收藏
页码:63 / +
页数:3
相关论文
共 50 条
  • [21] A continuum model of discrete granular avalanches
    Liang, Min-Chi
    Capart, Herve
    JOURNAL OF FLUID MECHANICS, 2024, 988
  • [22] Continuum modelling of masonry structures under static and dynamic loading
    Stefanou, I.
    Sulem, J.
    Vardoulakis, I.
    FRACTURE AND FAILURE OF NATURAL BUILDING STONES: APPLICATION IN THE RESTORATION OF ANCIENT MONUMENTS, 2006, : 123 - +
  • [23] Coupling atomistic and continuum modelling of magnetism
    Poluektov, M.
    Eriksson, O.
    Kreiss, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 219 - 253
  • [24] Challenges in Continuum Modelling of Intergranular Fracture
    Coffman, V. R.
    Sethna, J. P.
    Ingraffea, A. R.
    Bozek, J. E.
    Bailey, N. P.
    Barker, E. I.
    STRAIN, 2011, 47 : 99 - 104
  • [25] Modelling biomacromolecular assemblies with continuum mechanics
    Hanson, Benjamin
    Richardson, Robin
    Oliver, Robin
    Read, Daniel J.
    Harlen, Oliver
    Harris, Sarah
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 : 186 - 192
  • [26] Non-local continuum modelling of steady, densegranular heap flows
    Liu, Daren
    Henann, David L.
    JOURNAL OF FLUID MECHANICS, 2017, 831 : 212 - 227
  • [27] A Simplified Framework for Modelling Viscoelastic Fluids in Discrete Multiphysics
    Duque-Daza, Carlos
    Alexiadis, Alessio
    CHEMENGINEERING, 2021, 5 (03)
  • [28] Modelling the continuum of river channel patterns
    Nicholas, Andrew P.
    EARTH SURFACE PROCESSES AND LANDFORMS, 2013, 38 (10) : 1187 - 1196
  • [29] Continuum modelling of primary and secondary granular flows in a torsional shear cell
    Zheng, Q. J.
    Luo, Q.
    Yu, A. B.
    POWDER TECHNOLOGY, 2020, 361 : 10 - 20
  • [30] A discrete-to-continuum model of protein complexes
    Mariano, Paolo Maria
    Bacci, Marco
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2022, 21 (03) : 871 - 884