The joint graphical lasso for inverse covariance estimation across multiple classes

被引:627
作者
Danaher, Patrick [1 ]
Wang, Pei [2 ]
Witten, Daniela M. [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
Alternating directions method of multipliers; Gaussian graphical model; Generalized fused lasso; Graphical lasso; Group lasso; High dimensional data; Network estimation; REGRESSION; SELECTION; EXPRESSION; MODEL;
D O I
10.1111/rssb.12033
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating multiple related Gaussian graphical models from a high dimensional data set with observations belonging to distinct classes. We propose the joint graphical lasso, which borrows strength across the classes to estimate multiple graphical models that share certain characteristics, such as the locations or weights of non-zero edges. Our approach is based on maximizing a penalized log-likelihood. We employ generalized fused lasso or group lasso penalties and implement a fast alternating directions method of multipliers algorithm to solve the corresponding convex optimization problems. The performance of the method proposed is illustrated through simulated and real data examples.
引用
收藏
页码:373 / 397
页数:25
相关论文
共 38 条
[1]   K-ras as a target for lung cancer therapy [J].
Adjei, Alex A. .
JOURNAL OF THORACIC ONCOLOGY, 2008, 3 (06) :S160-S163
[2]   Recovering time-varying networks of dependencies in social and biological studies [J].
Ahmed, Amr ;
Xing, Eric P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (29) :11878-11883
[3]  
[Anonymous], 2010, TECHNICAL REPORT
[4]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[5]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[6]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[7]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[8]   Content-rich biological network constructed by mining PubMed abstracts [J].
Chen, H ;
Sharp, BM .
BMC BIOINFORMATICS, 2004, 5 (1)
[9]   PATHWISE COORDINATE OPTIMIZATION [J].
Friedman, Jerome ;
Hastie, Trevor ;
Hoefling, Holger ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (02) :302-332
[10]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441