Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems

被引:82
作者
Glowinski, R. [1 ]
Kuznetsov, Yu. [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
second order elliptic problems; fictitious domain methods; Lagrange multipliers; finite element approximations; preconditioned iterative methods; conjugate gradient algorithms; Lanczos algorithms;
D O I
10.1016/j.cma.2006.05.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article we further investigate the solution of linear second order elliptic boundary value problems by distributed Lagrange multipliers based fictitious domain methods. The following issues are addressed: (i) Derivation of the fictitious domain formulations. (ii) Finite element approximation. (iii) Iterative solution of the resulting finite dimensional problems (of the saddle-point type) by preconditioned conjugate gradient and Lanczos algorithms. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1498 / 1506
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 2003, HDB NUMER ANAL
[2]  
[Anonymous], SOVIET MATH DOKLADY
[3]  
[Anonymous], 1978, COMP MATH MATH PHYS+
[4]  
ASTRAKHANTSEV G, 1972, THERSIS LOMI AKAD NA
[5]  
Bespalov A., 1992, Impact of Computing in Science and Engineering, V4, P217, DOI 10.1016/0899-8248(92)90002-P
[6]   An operator splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems [J].
Bokil, VA ;
Glowinski, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (01) :242-268
[7]   DIRECT METHODS FOR SOLVING POISSONS EQUATIONS [J].
BUZBEE, BL ;
GOLUB, GH ;
NIELSON, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (04) :627-&
[8]  
DINH QV, 1992, P 5 INT S DOM DEC ME, P151
[9]  
FINOGENOV SA, 1988, SOV J NUMER ANAL MAT, V3, P301
[10]  
Girault V., 1995, JAPAN J IND APPL MAT, V12, P487, DOI [10.1007/BF03167240, DOI 10.1007/BF03167240]