ANARCI: antigen receptor numbering and receptor classification

被引:202
|
作者
Dunbar, James [1 ]
Deane, Charlotte M. [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
英国工程与自然科学研究理事会;
关键词
VARIABLE DOMAINS; IMMUNOGLOBULINS; DATABASE; TOOL;
D O I
10.1093/bioinformatics/btv552
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antibody amino-acid sequences can be numbered to identify equivalent positions. Such annotations are valuable for antibody sequence comparison, protein structure modelling and engineering. Multiple different numbering schemes exist, they vary in the nomenclature they use to annotate residue positions, their definitions of position equivalence and their popularity within different scientific disciplines. However, currently no publicly available software exists that can apply all the most widely used schemes or for which an executable can be obtained under an open license. Results: ANARCI is a tool to classify and number antibody and T-cell receptor amino-acid variable domain sequences. It can annotate sequences with the five most popular numbering schemes: Kabat, Chothia, Enhanced Chothia, IMGT and AHo.
引用
收藏
页码:298 / 300
页数:3
相关论文
共 50 条
  • [41] Sequence-Based Prediction of Olfactory Receptor Responses
    Chepurwar, Shashank
    Gupta, Abhishek
    Haddad, Rafi
    Gupta, Nitin
    CHEMICAL SENSES, 2019, 44 (09) : 693 - 703
  • [42] Olfactory Receptor Responses to Pure Odorants in Drosophila melanogaster
    Luedke, Alja
    Kumaraswamy, Ajayrama
    Galizia, C. Giovanni
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2025, 61 (05)
  • [43] Impact of TP53 Genomic Alterations in Large B-Cell Lymphoma Treated With CD19-Chimeric Antigen Receptor T-Cell Therapy
    Shouval, Roni
    Alarcon Tomas, Ana
    Fein, Joshua A.
    Flynn, Jessica R.
    Markovits, Ettai
    Mayer, Shimrit
    Olaide Afuye, Aishat
    Alperovich, Anna
    Anagnostou, Theodora
    Besser, Michal J.
    Batlevi, Connie Lee
    Dahi, Parastoo B.
    Devlin, Sean M.
    Fingrut, Warren B.
    Giralt, Sergio A.
    Lin, Richard J.
    Markel, Gal
    Salles, Gilles
    Sauter, Craig S.
    Scordo, Michael
    Shah, Gunjan L.
    Shah, Nishi
    Scherz-Shouval, Ruth
    van den Brink, Marcel
    Perales, Miguel-Angel
    Palomba, Maria Lia
    JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (04) : 369 - +
  • [44] Modulating and evaluating receptor promiscuity through directed evolution and modeling
    Stainbrook, Sarah C.
    Yu, Jessica S.
    Reddick, Michael P.
    Bagheri, Neda
    Tyo, Keith E. J.
    PROTEIN ENGINEERING DESIGN & SELECTION, 2017, 30 (06) : 455 - 465
  • [45] Structural Basis of Neurohormone Perception by the Receptor Tyrosine Kinase Torso
    Jenni, Simon
    Goyal, Yogesh
    von Grotthuss, Marcin
    Shvartsman, Stanislav Y.
    Klein, Daryl E.
    MOLECULAR CELL, 2015, 60 (06) : 941 - 952
  • [46] The distribution and characteristics of LDL receptor mutations in China: A systematic review
    Jiang, Long
    Sun, Li-Yuan
    Dai, Yan-Fang
    Yang, Shi-Wei
    Zhang, Feng
    Wang, Lu-Ya
    SCIENTIFIC REPORTS, 2015, 5
  • [47] The Fc receptor-cytoskeleton complex from human neutrophils
    Florentinus, Angelica K.
    Jankowski, Andy
    Petrenko, Veronika
    Bowden, Peter
    Marshall, John G.
    JOURNAL OF PROTEOMICS, 2011, 75 (02) : 450 - 468
  • [48] Residue 6.43 defines receptor function in class F GPCRs
    Turku, Ainoleena
    Schihada, Hannes
    Kozielewicz, Pawel
    Bowin, Carl-Fredrik
    Schulte, Gunnar
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [49] A T cell receptor transgenic mouse model of inflammatory arthritis
    Andrew Cope
    Arthritis Research & Therapy, 3 (1)
  • [50] GRIPDB - G protein coupled Receptor Interaction Partners DataBase
    Nemoto, Wataru
    Fukui, Kazuhiko
    Toh, Hiroyuki
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2011, 31 (03) : 199 - 205