ANARCI: antigen receptor numbering and receptor classification

被引:202
|
作者
Dunbar, James [1 ]
Deane, Charlotte M. [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
英国工程与自然科学研究理事会;
关键词
VARIABLE DOMAINS; IMMUNOGLOBULINS; DATABASE; TOOL;
D O I
10.1093/bioinformatics/btv552
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Antibody amino-acid sequences can be numbered to identify equivalent positions. Such annotations are valuable for antibody sequence comparison, protein structure modelling and engineering. Multiple different numbering schemes exist, they vary in the nomenclature they use to annotate residue positions, their definitions of position equivalence and their popularity within different scientific disciplines. However, currently no publicly available software exists that can apply all the most widely used schemes or for which an executable can be obtained under an open license. Results: ANARCI is a tool to classify and number antibody and T-cell receptor amino-acid variable domain sequences. It can annotate sequences with the five most popular numbering schemes: Kabat, Chothia, Enhanced Chothia, IMGT and AHo.
引用
收藏
页码:298 / 300
页数:3
相关论文
共 50 条
  • [1] Regulation of antigen receptor gene assembly in lymphocytes
    Oltz, EM
    IMMUNOLOGIC RESEARCH, 2001, 23 (2-3) : 121 - 133
  • [2] Regulation of antigen receptor gene assembly in lymphocytes
    Eugene M. Oltz
    Immunologic Research, 2001, 23 : 121 - 133
  • [3] Understanding the Significance and Implications of Antibody Numbering and Antigen-Binding Surface/Residue Definition
    Dondelinger, Mathieu
    Filee, Patrice
    Sauvage, Eric
    Quinting, Birgit
    Muyldermans, Serge
    Galleni, Moreno
    Vandevenne, Marylene S.
    FRONTIERS IN IMMUNOLOGY, 2018, 9
  • [4] AbNumPro: A comprehensive offline toolkit for antibody numbering and antigen-binding region prediction
    Li, Wenzhen
    Lin, Hongyan
    Peng, Lvxin
    Jiang, Qianhu
    Gou, Yushu
    Xie, Lu
    Huang, Jian
    SOFTWARE IMPACTS, 2025, 23
  • [5] Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor
    Oh, Myongin
    Shen, Maximilian
    Liu, Ruibin
    Stavitskaya, Lidiya
    Shen, Jana
    ACS CHEMICAL NEUROSCIENCE, 2024, 15 (15): : 2842 - 2852
  • [6] Sliding-attention transformer neural architecture for predicting T cell receptor-antigen-human leucocyte antigen binding
    Feng, Ziyan
    Chen, Jingyang
    Hai, Youlong
    Pang, Xuelian
    Zheng, Kun
    Xie, Chenglong
    Zhang, Xiujuan
    Li, Shengqing
    Zhang, Chengjuan
    Liu, Kangdong
    Zhu, Lili
    Hu, Xiaoyong
    Li, Shiliang
    Zhang, Jie
    Zhang, Kai
    Li, Honglin
    NATURE MACHINE INTELLIGENCE, 2024, 6 (10) : 1216 - 1230
  • [7] Evaluation of the Antigen-Experienced B-Cell Receptor Repertoire in Healthy Children and Adults
    IJspeert, Hanna
    van Schouwenburg, Pauline A.
    van Zessen, David
    Pico-Knijnenburg, Ingrid
    Driessen, Gertjan J.
    Stubbs, Andrew P.
    van der Burg, Mirjam
    FRONTIERS IN IMMUNOLOGY, 2016, 7
  • [8] Investigating comparative polymerase chain reaction for antigen receptor rearrangement analysis in different types of feline lymphoma samples
    Siripoonsub, Jedsada
    Techangamsuwan, Somporn
    Sirivisoot, Sirintra
    Radtanakatikanon, Araya
    Rungsipipat, Anudep
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [9] MOLECULAR-COMPONENTS OF THE B-CELL ANTIGEN RECEPTOR COMPLEX OF CLASS IGD DIFFER PARTLY FROM THOSE OF IGM
    WIENANDS, J
    HOMBACH, J
    RADBRUCH, A
    RIESTERER, C
    RETH, M
    EMBO JOURNAL, 1990, 9 (02) : 449 - 455
  • [10] Immunoglobulin and T cell receptor genes: IMGT® and the birth and rise of immunoinformatics
    Lefranc, Marie-Paule
    FRONTIERS IN IMMUNOLOGY, 2014, 5