An Improved Self Adaptive Min-Sum Decoding Algorithm for Flexible Low-Density Parity-Check Decoder

被引:2
作者
Roberts, Michaelraj Kingston [1 ]
Jayabalan, Ramesh [2 ]
机构
[1] BMS Coll Engn, Bull Temple Rd, Bangalore 560019, Karnataka, India
[2] PSG Coll Technol, Coimbatore 641004, Tamil Nadu, India
来源
NATIONAL ACADEMY SCIENCE LETTERS-INDIA | 2017年 / 40卷 / 02期
关键词
Belief propagation; Decoding; Low-density parity-check (LDPC) codes; Min-sum algorithm (MSA); BELIEF PROPAGATION; LDPC CODES;
D O I
10.1007/s40009-016-0519-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, an improved self adaptive min-sum decoding algorithm for flexible low-density parity-check (LDPC) code is proposed. In the proposed algorithm, new modifications are incorporated in both the check node and variable node update process to support the irregular LDPC codes. In the check node and variable node update process of the proposed algorithm, an improved min-sum approximation and down scaling factors are adopted. These modifications result in good error correcting performance without increasing the computational complexity. Through simulations the proposed decoding algorithm is shown to exhibit better decoding performance by achieving overall FER and BER coding gain improvement of 0.31 and 0.26 dB respectively.
引用
收藏
页码:121 / 125
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2006, IEEE Standard 802.16--2005
[2]  
[Anonymous], P80211 IEEE
[3]   Reduced-complexity decoding of LDPC codes [J].
Chen, JH ;
Dholakia, A ;
Eleftheriou, E ;
Fossorier, MRC ;
Hu, XY .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2005, 53 (08) :1288-1299
[4]   Near optimum universal belief propagation based decoding of low-density parity check codes [J].
Chen, JH ;
Fossorier, MPC .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2002, 50 (03) :406-414
[5]   Reduced complexity iterative decoding of low-density parity check codes based on belief propagation [J].
Fossorier, MPC ;
Mihaljevic, M ;
Imai, H .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1999, 47 (05) :673-680
[6]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[7]   Good error-correcting codes based on very sparse matrices [J].
MacKay, DJC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :399-431
[8]   Near Shannon limit performance of low density parity check codes [J].
MacKay, DJC ;
Neal, RM .
ELECTRONICS LETTERS, 1997, 33 (06) :457-458
[9]   Min-Sum Decoder Architectures With Reduced Word Length for LDPC Codes [J].
Oh, Daesun ;
Parhi, Keshab K. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (01) :105-115
[10]   Design of capacity-approaching irregular low-density parity-check codes [J].
Richardson, TJ ;
Shokrollahi, MA ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :619-637