Local conformal nets arising from framed vertex operator algebras

被引:30
作者
Kawahigashi, Yasuyuki [1 ]
Longo, Roberto
机构
[1] Univ Tokyo, Dept Math Sci, Tokyo 1538914, Japan
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Erwin Schrodinger Inst, Vienna, Austria
基金
日本学术振兴会;
关键词
algebraic quantum field theory; conformal field theory; monster; moonshine; vertex operator algebra; subfactor;
D O I
10.1016/j.aim.2005.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply an idea of framed vertex operator algebras to a construction of local conformal nets of (injective type III1) factors on the circle corresponding to various lattice vertex operator algebras and their twisted orbifolds. In particular, we give a local conformal net corresponding to the moonshine vertex operator algebras of Frenkel-Lepowsky-Meurman. Its central charge is 24, it has a trivial representation theory in the sense that the vacuum sector is the only irreducible DHR sector, its vacuum character is the modular invariant J-function and its automorphism group (the gauge group) is the Monster group. We use our previous tools such as alpha-induction and complete rationality to study extensions of local conformal nets. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:729 / 751
页数:23
相关论文
共 66 条
[1]  
[Anonymous], REV MATH PHYS
[2]   Modular invariants from subfactors:: Type I coupling matrices and intermediate subfactors [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :267-289
[3]   Modular invariants, graphs and α-induction for nets of subfactors I [J].
Bockenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :361-386
[4]   Chiral structure of modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (03) :733-784
[5]   On α-induction, chiral generators and modular invariants for subfactors [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (02) :429-487
[6]   Longo-Rehren subfactors arising α-induction [J].
Böckenhauer, J ;
Evans, DE ;
Kawahigashi, Y .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2001, 37 (01) :1-35
[7]   Modular invariants, graphs and α-induction for nets of subfactors.: II [J].
Böckenhauer, J ;
Evans, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :57-103
[8]   Modular invariants, graphs and α-induction for nets of subfactors.: III [J].
Böckenhauer, J ;
Evens, DE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :183-228
[9]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[10]   MODULAR STRUCTURE AND DUALITY IN CONFORMAL QUANTUM-FIELD THEORY [J].
BRUNETTI, R ;
GUIDO, D ;
LONGO, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (01) :201-219