Minimizing lithium deactivation during high-rate electroplating via sub-ambient thermal gradient control

被引:7
作者
Atkinson, R. W., III [1 ]
Kingston, T. A. [2 ,3 ]
Klein, E. J. [3 ]
NewRingeisen, A. [3 ]
Carter, R. [3 ]
Love, C. T. [3 ]
机构
[1] EXCET Inc, Springfield, VA 22151 USA
[2] US Naval Res Lab, Washington, DC 20375 USA
[3] US Naval Res Lab, Chem Div, Washington, DC 20375 USA
关键词
Lithium metal anode; Inhomogeneous temperature distribution; Operando optical visualization; Low temperature battery; DENDRITE GROWTH; METAL ANODES; CYCLE LIFE; ELECTROLYTE; ION; BEHAVIOR; SEI; CONDUCTIVITY; INTERPHASES; MORPHOLOGY;
D O I
10.1016/j.mtener.2020.100538
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The reversibility of Li electrodeposits must be significantly improved for Li metal anodes to be realized for next-generation, high energy density batteries. The most commonly tested thermal condition in the Li metal battery literature is isothermal similar to 20 degrees C (ambient). Elevating the cell temperature (40 degrees C) improves Li metal stability by suppressing dendritic growth at the expense of augmenting solid electrolyte interphase growth. However, at the high current density and areal capacity tested in this work (10 mA cm(-2), 3.0 mA h cm(-2)), dendritic growth is inevitable and Li metal electrodes succumb to extensive degradation due to Li deactivation. To overcome these shortcomings of isothermal cycling, we expand on our concept of an interelectrode thermal gradient, which enhances Li surface diffusion to homogenize Li electroplating. With mean temperatures near ambient, a thermal gradient (Delta T-warm: 22.6 degrees C negative electrode, 21.4 degrees C positive electrode) delays failure compared with isothermal control (20 degrees C). The greatest benefit of the thermal gradient is unlocked at sub-ambient electrode temperatures. By applying the thermal gradient at low temperatures (Delta T-cold: 3.7 degrees C negative electrode, 2.0 degrees C positive electrode), SEI growth stifles, dendrite propagation suppresses, and Li deactivation minimizes, stabilizing high-rate Li electroplating and stripping. After 100 cycles, Delta T-cold reduces voltage hysteresis and electrode resistance by 51% and 77%, respectively, compared with the most promising isothermal condition (40 degrees C). Operando optical visualization confirms more reversible and dense Li electrodeposition via sub-ambient thermal gradient control with higher first-cycle Coulombic efficiency in an anode-free configuration. By contrast, isothermal 20 degrees C control exacerbates porous and dendritic Li electrodeposition with low reversibility. Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2014, 246 :84-89
[2]   Operational strategy to stabilize lithium metal anodes by applied thermal gradient [J].
Atkinson, Robert W., III ;
Carter, Rachel ;
Love, Corey T. .
ENERGY STORAGE MATERIALS, 2019, 22 :18-28
[3]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[4]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[5]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[6]   Differential voltage analyses of high-power, lithium-ion cells 1. Technique and application [J].
Bloom, I ;
Jansen, AN ;
Abraham, DP ;
Knuth, J ;
Jones, SA ;
Battaglia, VS ;
Henriksen, GL .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :295-303
[7]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[8]   Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient [J].
Carter, Rachel ;
Love, Corey T. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) :26328-26334
[9]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473