Optimization of piston type extrusion (PTE) techniques for 3D printed food

被引:22
作者
Kim, Namsoo Peter [1 ,2 ,3 ]
Eo, Jae-Seok [1 ,3 ]
Cho, Diana [2 ]
机构
[1] Univ Texas El Paso, Dept Met Mat & Biomed Engn, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Ctr Adv Food Printing & Phamacy Training CAFE PPT, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Printing Nano Engn Lab, El Paso, TX 79968 USA
关键词
Piston type extrusion (PTE); Screw type extrusion (STE); 3D food printing; High viscosity materials; Head travelinig speed; Linear velocity; FABRICATION;
D O I
10.1016/j.jfoodeng.2018.04.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The piston type extrusion (PTE) method with the employ of the Internet of Things (loT) technology for ejecting bio-materials and high viscosity material by using an extruder have been successfully optimized in terms of the head traveling speed and the piston pressure with food materials of various viscosities. Along with mathematical approach by using Hagen Poisoulle (HP) equation governing high viscosity flow, the study demonstrated that the material's ch, (volumetric flow rate) has constant output at 3.6 x 10(-8) m(3)/s with the material viscosity of 0.001-1000 Pa.S. and the PTE method has shown to be effective when the water content is higher than 33 wt %. When the high viscosity material is stacked more than 20 layers at an optimized height, the three-dimensional shape can be maintained between the head traveling speed of 1.5 x 10(-2) and 2.0 x 10(-2) m/s. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [41] 3D Printed Polymeric Hydrogels for Nerve Regeneration
    Maiti, Binoy
    Diaz Diaz, David
    POLYMERS, 2018, 10 (09):
  • [42] On 3D printed intelligent diaphragmatic hernia sensor
    Singh, Rupinder
    Singh, Gurwinder
    Anand, Arun
    RAPID PROTOTYPING JOURNAL, 2024, 30 (02) : 323 - 337
  • [43] 3D Printed Organs: The Future of Regenerative Medicine
    Badwaik, Rahul
    JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2019, 13 (11) : FE01 - FE08
  • [44] Practicality of 3D Printed Personalized Medicines in Therapeutics
    Amekyeh, Hilda
    Tarlochan, Faris
    Billa, Nashiru
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [45] Tribological behavior of 3D printed biomimetic surfaces
    Mzali, Slah
    Elwasli, Fatma
    Mezlini, Salah
    Hajlaoui, Khalil
    Alrasheedi, Nashmi H.
    TRIBOLOGY INTERNATIONAL, 2024, 193
  • [46] Copper electroplating of 3D printed composite electrodes
    Vaneckova, Eva
    Bousa, Milan
    Sokolova, Romana
    Moreno-Garcia, Pavel
    Broekmann, Peter
    Shestivska, Violetta
    Rathousky, Jiri
    Gal, Miroslav
    Sebechlebska, Tana
    Kolivoska, Viliam
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 858
  • [47] 3D Printed and Conventional Membranes-A Review
    Thiam, Baye Gueye
    El Magri, Anouar
    Vanaei, Hamid Reza
    Vaudreuil, Sebastien
    POLYMERS, 2022, 14 (05)
  • [48] 3D printed electrochemical energy storage devices
    Chang, Peng
    Mei, Hui
    Zhou, Shixiang
    Dassios, Konstantinos G.
    Cheng, Laifei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) : 4230 - 4258
  • [49] 3D printed microfluidics for cell biological applications
    Zhao, Liang
    Wang, Xiayan
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 158
  • [50] 3D printed and structurally strengthened ammonia sensor
    Zhou, Shixiang
    Mei, Hui
    Lu, Mingyang
    Cheng, Laifei
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 139