Optimization of piston type extrusion (PTE) techniques for 3D printed food

被引:22
|
作者
Kim, Namsoo Peter [1 ,2 ,3 ]
Eo, Jae-Seok [1 ,3 ]
Cho, Diana [2 ]
机构
[1] Univ Texas El Paso, Dept Met Mat & Biomed Engn, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Ctr Adv Food Printing & Phamacy Training CAFE PPT, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Printing Nano Engn Lab, El Paso, TX 79968 USA
关键词
Piston type extrusion (PTE); Screw type extrusion (STE); 3D food printing; High viscosity materials; Head travelinig speed; Linear velocity; FABRICATION;
D O I
10.1016/j.jfoodeng.2018.04.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The piston type extrusion (PTE) method with the employ of the Internet of Things (loT) technology for ejecting bio-materials and high viscosity material by using an extruder have been successfully optimized in terms of the head traveling speed and the piston pressure with food materials of various viscosities. Along with mathematical approach by using Hagen Poisoulle (HP) equation governing high viscosity flow, the study demonstrated that the material's ch, (volumetric flow rate) has constant output at 3.6 x 10(-8) m(3)/s with the material viscosity of 0.001-1000 Pa.S. and the PTE method has shown to be effective when the water content is higher than 33 wt %. When the high viscosity material is stacked more than 20 layers at an optimized height, the three-dimensional shape can be maintained between the head traveling speed of 1.5 x 10(-2) and 2.0 x 10(-2) m/s. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 50 条
  • [21] Tailoring multiscale porosity in 3D printed food-based natural fiber composites
    Islam, Md Nurul
    Smith, Lee
    Shi, Sheldon Q.
    Jiang, Yijie
    MRS COMMUNICATIONS, 2024, 14 (04) : 553 - 560
  • [22] Inkjet 3D printed check microvalve
    Walczak, Rafal
    Adamski, Krzysztof
    Lizanets, Danylo
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (04)
  • [23] Electrochemiluminescence at 3D Printed Titanium Electrodes
    Douman, Samantha F.
    De Eguilaz, Miren Ruiz
    Cumba, Loanda R.
    Beirne, Stephen
    Wallace, Gordon G.
    Yue, Zhilian
    Iwuoha, Emmanuel I.
    Forster, Robert J.
    FRONTIERS IN CHEMISTRY, 2021, 9
  • [24] 3D printed nervous system on a chip
    Johnson, Blake N.
    Lancaster, Karen Z.
    Hogue, Ian B.
    Meng, Fanben
    Kong, Yong Lin
    Enquist, Lynn W.
    McAlpine, Michael C.
    LAB ON A CHIP, 2016, 16 (08) : 1393 - 1400
  • [25] A Review of 3D Printed Bone Implants
    Li, Zhaolong
    Wang, Qinghai
    Liu, Guangdong
    MICROMACHINES, 2022, 13 (04)
  • [26] 3D printed millireactors for process intensification
    Santana, Harrson S.
    Rodrigues, Alan C.
    Lopes, Mariana G. M.
    Russo, Felipe N.
    Silva, Joao L., Jr.
    Taranto, Osvaldir P.
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (01) : 180 - 190
  • [27] Evolution of 3D printed soft actuators
    Zolfagharian, Ali
    Kouzani, Abbas Z.
    Khoo, Sui Yang
    Moghadam, Amir Ali Amiri
    Gibson, Ian
    Kaynak, Akif
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 250 : 258 - 272
  • [28] 3D Printed e-Tongue
    Gaal, Gabriel
    da Silva, Tatiana A.
    Gaal, Vladimir
    Hensel, Rafael C.
    Amaral, Lucas R.
    Rodrigues, Varlei
    Riul, Antonio, Jr.
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [29] 3D Printed Silicones with Shape Memory
    Wu, Amanda S.
    Small, Ward
    Bryson, Taylor M.
    Cheng, Emily
    Metz, Thomas R.
    Schulze, Stephanie E.
    Duoss, Eric B.
    Wilson, Thomas S.
    SCIENTIFIC REPORTS, 2017, 7
  • [30] 3D Printed Photoresponsive Materials for Photonics
    Nocentini, Sara
    Mortella, Daniele
    Parmeggiani, Camilla
    Wiersma, Diederik S.
    ADVANCED OPTICAL MATERIALS, 2019, 7 (16)