Sharp global nonlinear stability for temperature-dependent viscosity convection

被引:34
作者
Straughan, B [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2002年 / 458卷 / 2023期
关键词
unconditional stability; temperature-dependent viscosity; thermal convection; Ladyzhenskaya's models;
D O I
10.1098/rspa.2001.0945
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With regard to the dependence of viscosity on temperature, an unconditional nonlinear energy-stability analysis for thermal convection according to Navier-Stokes theory has not yet been developed. We here analyse three models of fluid behaviour proposed by O. A. Ladyzhenskaya. We show that by using these theories we can develop an unconditional analysis directly. Two of the models lead directly to an unconditional development employing L-2 theory, while the third necessitates the introduction of a generalized energy also involving an L-3 term. The nonlinear stability boundaries in all three cases are sharp when compared with the instability thresholds of linear theory.
引用
收藏
页码:1773 / 1782
页数:10
相关论文
共 21 条
[1]   NONLINEAR STABILITY ANALYSIS OF CONVECTION FOR FLUIDS WITH EXPONENTIALLY TEMPERATURE-DEPENDENT VISCOSITY [J].
CAPONE, F ;
GENTILE, M .
ACTA MECHANICA, 1994, 107 (1-4) :53-64
[2]  
CAPONE F, 1995, CONTINUUM MECH THERM, V7, P297, DOI 10.1007/BF01176290
[3]  
Diaz J. I., 1998, TOPOL METHOD NONL AN, V11, P59
[4]   On the Boussinesq system with non linear thermal diffusion [J].
Diaz, JI ;
Galiano, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) :3255-3263
[5]  
DOERING CR, 1995, APPL ANAL NAVIERSTOK
[6]   Asymptotic and other properties of a nonlinear diffusion model [J].
Flavin, JN ;
Rionero, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 228 (01) :119-140
[7]   Nonlinear stability for a thermofluid in a vertical porous slab [J].
Flavin, JN ;
Rionero, S .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1999, 11 (03) :173-179
[8]   The Benard problem for nonlinear heat conduction: Unconditional stability [J].
Flavin, JN ;
Rionero, S .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1999, 52 :441-452
[9]   Spatial and time localization of solutions of the Boussinesq system with nonlinear thermal diffusion [J].
Galiano, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (03) :423-438
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS