The number of zeros of a sum of fractional powers

被引:0
作者
James, GJO [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2070期
关键词
zeros; Descartes; Laguerre; sign changes; exponential sums;
D O I
10.1098/rspa.2005.1647
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider functions of the form f(x) Sigma(n)(j=1) c(j)(x + a(j))(p) where a(1) > center dot center dot center dot > a(n) >= 0. A version of Descartes's rule of signs applies. Further, if C-j, = Sigma(j)(i=1) and C-n = 0. then the number of zeros of f is bounded by the number of sign changes of ( C-j). The estimate is reduced by 1 for each relation of the form Sigma(n)(j=1) c(j)a(j)(r) = 0.
引用
收藏
页码:1821 / 1830
页数:10
相关论文
共 5 条
[1]  
Huxley M.N., 1996, London Mathematical Society Monographs. New Series, V13
[2]  
JAMESON GJO, IN PRESS MATH GAZETT
[3]  
Laguerre E. N., 1883, J MATH PURE APPL, V3, P99
[4]  
POLYA G, 1925, AUFGABEN LEHRSATZE A, V2
[5]  
WATT N, 1989, J LOND MATH SOC, V39, P385