New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations

被引:49
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
D O I
10.1016/j.chaos.2004.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study nonlinear variants of the KdV and the KP equations with positive and negative exponents. The sine-cosine algorithm is employed to back up the proposed analysis. The work reveals new exact solutions with compactons, solitons, solitary patterns and periodic structures for these variants. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:249 / 260
页数:12
相关论文
共 36 条
[2]  
Adomian G., 1994, SOLVING FRONTIER PRO
[3]   Breather compactons in nonlinear Klein-Gordon systems [J].
Dinda, PT ;
Remoissenet, M .
PHYSICAL REVIEW E, 1999, 60 (05) :6218-6221
[4]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[5]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[6]  
KIVSHAR YS, 1994, NATO ADV SCI INST SE, V329, P255
[7]   Patterns on liquid surfaces: cnoidal waves, compactons and scaling [J].
Ludu, A ;
Draayer, JP .
PHYSICA D, 1998, 123 (1-4) :82-91
[8]   THE KADOMTSEV-PETVIASHVILI EQUATION - THE TRACE METHOD AND THE SOLITON RESONANCES [J].
OHKUMA, K ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1983, 52 (03) :749-760
[9]   Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support [J].
Olver, PJ ;
Rosenau, P .
PHYSICAL REVIEW E, 1996, 53 (02) :1900-1906
[10]   NONLINEAR DISPERSION AND COMPACT STRUCTURES [J].
ROSENAU, P .
PHYSICAL REVIEW LETTERS, 1994, 73 (13) :1737-1741