Solutions to a class of nonlinear differential equations of fractional order

被引:0
作者
Kosmatov, Nickolai [1 ]
机构
[1] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA
关键词
differential equation of fractional order; fixed point theorem; Riemann-Liouville derivative; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the formulation of a class of boundary value problems of fractional order with the Riemann-Liouville fractional derivative and integral-type boundary conditions. The existence of solutions is established by applying a fixed point theorem of Krasnosel'skn and Zabreiko for asymptotically linear mappings.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[4]   Existence results for fractional order functional differential equations with infinite delay [J].
Benchohra, A. ;
Henderson, J. ;
Ntouyas, S. K. ;
Ouahab, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1340-1350
[5]   Existence and uniqueness for a nonlinear fractional differential equation [J].
Delbosco, D ;
Rodino, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (02) :609-625
[6]  
Diethelm K., 1999, On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity, P217
[7]   On the functional integral equations of mixed type and integro-differential equations of fractional orders [J].
El-Sayed, WG ;
El-Sayed, AMA .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (02) :461-467
[8]   Existence of the mild solution for fractional semilinear initial value problems [J].
Jaradat, Omar K. ;
Al-Omari, Ahmad ;
Momani, Shaher .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) :3153-3159
[9]   An existence result for a multipoint boundary value problem on a time scale [J].
Karna, Basant ;
Lawrence, Bonita A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2006, 2006 (1)
[10]  
Kilbas A., 2001, Applicable Anal, V78, P153, DOI DOI 10.1080/00036810108840931