Investigating the Properties of Indicators and an Evolutionary Many-Objective Algorithm Using Promising Regions

被引:115
作者
Yuan, Jiawei [1 ]
Liu, Hai-Lin [1 ]
Gu, Fangqing [1 ]
Zhang, Qingfu [2 ,3 ]
He, Zhaoshui [1 ,4 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510520, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[4] Guangdong Univ Technol, Ctr Autodetect Technol Intelligent Mfg, Guangzhou 510520, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; indicators; many-objective optimization; multiobjective optimization; robustness; DECOMPOSITION; DOMINANCE; DIVERSITY; QUALITY;
D O I
10.1109/TEVC.2020.2999100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article investigates the properties of ratio and difference-based indicators under the Minkovsky distance and demonstrates that a ratio-based indicator with infinite norm is the best for solution evaluation among these indicators. Accordingly, a promising-region-based evolutionary many-objective algorithm with the ratio-based indicator is proposed. In our proposed algorithm, a promising region is identified in the objective space using the ratio-based indicator with infinite norm. Since the individuals outside the promising region are of poor quality, we can discard these solutions from the current population. To ensure the diversity of population, a strategy based on the parallel distance is introduced to select individuals in the promising region. In this strategy, all individuals in the promising region are projected vertically onto the normal plane so that crowded distances between them can be calculated. Afterward, two solutions with a smaller distance are selected from the candidate solutions each time, and the solution with the smaller indicator fitness value is removed from the current population. Empirical studies on various benchmark problems with 3-20 objectives show that the proposed algorithm performs competitively on all test problems. Compared with a number of other state-of-the-art evolutionary algorithms, the proposed algorithm is more robust on these problems with various Pareto fronts.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 67 条
[1]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[2]   Hypervolume-based multi-objective local search [J].
Basseur, Matthieu ;
Zeng, Rong-Qiang ;
Hao, Jin-Kao .
NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08) :1917-1929
[3]   The r-Dominance: A New Dominance Relation for Interactive Evolutionary Multicriteria Decision Making [J].
Ben Said, Lamjed ;
Bechikh, Slim ;
Ghedira, Khaled .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) :801-818
[4]   SMS-EMOA: Multiobjective selection based on dominated hypervolume [J].
Beume, Nicola ;
Naujoks, Boris ;
Emmerich, Michael .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) :1653-1669
[5]   On the Complexity of Computing the Hypervolume Indicator [J].
Beume, Nicola ;
Fonseca, Carlos M. ;
Lopez-Ibanez, Manuel ;
Paquete, Luis ;
Vahrenhold, Jan .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (05) :1075-1082
[6]   The balance between proximity and diversity in multiobjective evolutionary algorithms [J].
Bosman, PAN ;
Thierens, D .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :174-188
[7]   Approximation quality of the hypervolume indicator [J].
Bringmann, Karl ;
Friedrich, Tobias .
ARTIFICIAL INTELLIGENCE, 2013, 195 :265-290
[8]   Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods [J].
Brockhoff, Dimo ;
Zitzler, Eckart .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :2086-2093
[9]   Decomposition-Based-Sorting and Angle-Based-Selection for Evolutionary Multiobjective and Many-Objective Optimization [J].
Cai, Xinye ;
Yang, Zhixiang ;
Fan, Zhun ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) :2824-2837
[10]   Hyperplane Assisted Evolutionary Algorithm for Many-Objective Optimization Problems [J].
Chen, Huangke ;
Tian, Ye ;
Pedrycz, Witold ;
Wu, Guohua ;
Wang, Rui ;
Wang, Ling .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) :3367-3380