Congruences for 9-regular partitions modulo 3

被引:23
作者
Cui, Su-Ping [1 ,2 ]
Gu, Nancy S. S. [2 ]
机构
[1] ChangChun Architecture & Civil Engn Coll, Dept Basic Subjects Teaching, Changchun 130607, Peoples R China
[2] Nankai Univ, Ctr Combinator, LPMC TJKLC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Partition; Congruence; l-regular partition; DISTINCT PARTS; SIMPLE PROOF; EVEN PARTS; NUMBER; POWERS; CONJECTURE;
D O I
10.1007/s11139-014-9586-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In view of the modular equation of fifth order, we give a simple proof of Keith's conjecture which is some infinite families of congruences modulo 3 for the 9-regular partition function. Meanwhile, we derive some new congruences modulo 3 for the 9-regular partition function.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 19 条
[1]  
Andrews GE., 1998, The Theory of Partitions
[2]   Arithmetic properties of partitions with even parts distinct [J].
Andrews, George E. ;
Hirschhorn, Michael D. ;
Sellers, James A. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :169-181
[3]  
Berndt BC., 2004, Number Theory in the Spirit of Ramanujan
[4]  
Calkin N., 2008, Integers, V8, pA60
[5]   On the number of partitions with distinct even parts [J].
Chen, Shi-Chao .
DISCRETE MATHEMATICS, 2011, 311 (12) :940-943
[6]   Arithmetic properties of l-regular partitions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. .
ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) :507-523
[7]   Congruences for l-regular partition functions modulo 3 [J].
Furcy, David ;
Penniston, David .
RAMANUJAN JOURNAL, 2012, 27 (01) :101-108
[8]   A SIMPLE PROOF OF WATSON PARTITION CONGRUENCES FOR POWERS OF 7 [J].
GARVAN, FG .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN) :316-334
[9]  
Gasper G., 2004, BASIC HYPERGEOMETRIC, V2nd edn
[10]  
Gordan B., 1997, Ramanujan J, V1, P25, DOI [DOI 10.1023/A:1009711020492, 10.1023/A:1009711020492]