Dislocation generation mechanisms in heavily boron-doped diamond epilayers

被引:11
作者
Araujo, D. [1 ]
Lloret, F. [2 ]
Alba, G. [1 ]
Alegre, M. P. [1 ]
Villar, M. P. [1 ]
机构
[1] Univ Cadiz, Dept Ciencia Mat & IM & QI, Puerto Real 11510, Spain
[2] Univ Cadiz, Dept Fis Aplicada, Puerto Real 11510, Spain
关键词
Epilayers;
D O I
10.1063/5.0031476
中图分类号
O59 [应用物理学];
学科分类号
摘要
Doping diamond layers for electronic applications has become straightforward during the last two decades. However, dislocation generation in diamond during the microwave plasma enhanced chemical vapor deposition growth process is still not fully understood. This is a truly relevant topic to avoid for an optimal performance of any device, but, usually, it is not considered when designing diamond structures for electronic devices. The incorporation of a dopant, here boron, into a lattice as close as that of diamond, can promote the appearance of dislocations in the epilayer. The present contribution analyzes the different processes that can take place in this epilayer and gives some rules to avoid the formation of dislocations, based on the comparison of the different dislocation generation mechanisms. Indeed, competitive mechanisms, such as doping atom proximity effect and lattice strain relaxation, are here quantified for heavily boron-doped diamond epilayers. The resulting growth condition windows for defect-free heavily doped diamond are here deduced, introducing the diamond parameters and its lattice expansion in several previously published critical thickness (h(c)) and critical doping level relationships for different doping levels and growth conditions. Experimental evidence supports the previously discussed thickness-doping-growth condition relationships. Layers with and without dislocations reveal that not only the thickness but also other key factors such as growth orientation and growth parameters are important, as dislocations are shown to be generated in epilayers with a thickness below the People and Bean critical thickness.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Critical boron-doping levels for generation of dislocations in synthetic diamond [J].
Alegre, M. P. ;
Araujo, D. ;
Fiori, A. ;
Pinero, J. C. ;
Lloret, F. ;
Villar, M. P. ;
Achatz, P. ;
Chicot, G. ;
Bustarret, E. ;
Jomard, F. .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[2]   Dislocations imaging in low boron doped diamond epilayers using Field Emission Scanning Electron Microscopy (FE-SEM) [J].
Barbay, C. ;
Saada, S. ;
Mer-Calfati, C. ;
Temgoua, S. ;
Barjon, J. ;
Arnault, J. C. .
APPLIED SURFACE SCIENCE, 2019, 495
[3]   Lattice parameters and thermal expansion of superconducting boron-doped diamonds [J].
Brazhkin, V. V. ;
Ekimov, E. A. ;
Lyapin, A. G. ;
Popova, S. V. ;
Rakhmanina, A. V. ;
Stishov, S. M. ;
Lebedev, V. M. ;
Katayama, Y. ;
Kato, K. .
PHYSICAL REVIEW B, 2006, 74 (14)
[4]   Diamond power devices: state of the art, modelling, figures of merit and future perspective [J].
Donato, N. ;
Rouger, N. ;
Pernot, J. ;
Longobardi, G. ;
Udrea, F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (09)
[5]   GEOMETRICAL-THEORY OF CRITICAL THICKNESS AND RELAXATION INSTRAINED-LAYER GROWTH [J].
DUNSTAN, DJ ;
YOUNG, S ;
DIXON, RH .
JOURNAL OF APPLIED PHYSICS, 1991, 70 (06) :3038-3045
[6]   Dislocation engineering in SiGe heteroepitaxial films on patterned Si (001) substrates [J].
Gatti, R. ;
Boioli, F. ;
Grydlik, M. ;
Brehm, M. ;
Groiss, H. ;
Glaser, M. ;
Montalenti, F. ;
Fromherz, T. ;
Schaeffler, F. ;
Miglio, Leo .
APPLIED PHYSICS LETTERS, 2011, 98 (12)
[7]   X-ray topography studies of dislocations in single crystal CVD diamond [J].
Gaukroger, M. P. ;
Martineau, P. M. ;
Crowder, M. J. ;
Friel, I. ;
Williams, S. D. ;
Twitchen, D. J. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (03) :262-269
[8]  
Gheeraert E, 2018, POWER ELECT DEVICE A, P191
[9]   Relaxation study of AlGaAs cladding layers in InGaAs/GaAs (111)B lasers designed for 1.0-1.1 μm operation [J].
Gutiérrez, M ;
Herrera, M ;
González, D ;
Aragón, G ;
Sánchez, JJ ;
Izpura, I ;
Hopkinson, M ;
García, R .
MICROELECTRONICS JOURNAL, 2002, 33 (07) :553-557
[10]   Strain relaxation behavior of InxGa1-xAs quantum wells on vicinal GaAs (111)B substrates [J].
Gutiérrez, M ;
González, D ;
Aragón, G ;
García, R ;
Hopkinson, M ;
Sánchez, JJ ;
Izpura, I .
APPLIED PHYSICS LETTERS, 2002, 80 (09) :1541-1543