integral equations;
boundary element method;
a posteriori error estimate;
adaptive algorithm;
collocation method;
qualocation method;
D O I:
10.1090/S0025-5718-97-00790-4
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R ChinaXiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
机构:
IMATI CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, PV, ItalyIMATI CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, PV, Italy
Bertoluzza, Silvia
Burman, Erik
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Dept Math, London WC1E 6BT, EnglandIMATI CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, PV, Italy
Burman, Erik
He, Cuiyu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Rio Grand Valley, Sch Math & Stat Sci, Brownsville, TX 78520 USAIMATI CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, PV, Italy