An a posteriori error estimate for a first-kind integral equation

被引:80
作者
Carstensen, C
机构
关键词
integral equations; boundary element method; a posteriori error estimate; adaptive algorithm; collocation method; qualocation method;
D O I
10.1090/S0025-5718-97-00790-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new a posteriori error estimate for the boundary element method applied to an integral equation of the first kind. The estimate is local and sharp for quasi-uniform meshes and so improves earlier work of ours. The mesh-dependence of the constants is analyzed and shown to be weaker than expected from our previous work. Besides the Galerkin boundary element method, the collocation method and the qualocation method are considered. A numerical example is given involving an adaptive feedback algorithm.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 1976, MANUSCRIPTA GEOD
[2]  
[Anonymous], BANACH CTR PUBLICATI
[3]  
[Anonymous], APPL ANAL
[4]   ON THE ASYMPTOTIC CONVERGENCE OF COLLOCATION METHODS [J].
ARNOLD, DN ;
WENDLAND, WL .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :349-381
[5]   ON ADAPTIVE FINITE-ELEMENT METHODS FOR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
ASADZADEH, M ;
ERIKSSON, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) :831-855
[6]  
Bergh J., 1976, INTERPOLATION SPACES
[7]  
CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
[8]  
CARSTENSEN C, 1995, LECT NOTES PURE APPL, V167, P47
[9]   Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes [J].
Carstensen, C .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :69-84
[10]  
CARSTENSEN C, 1996, IN PRESS SIAM J NUME