Resolving the Sequence of RNA Strands by Tip-Enhanced Raman Spectroscopy

被引:19
作者
He, Zhe [1 ]
Qiu, Weiwei [2 ,3 ]
Kizer, Megan E. [4 ]
Wang, Jizhou [1 ]
Chen, Wencong [5 ]
Sokolov, Alexei, V [1 ,3 ]
Wang, Xing [6 ]
Hu, Jonathan [3 ]
Scully, Marlan O. [1 ,3 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77840 USA
[2] Zhejiang Univ Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
[3] Baylor Univ, Waco, TX 76798 USA
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[5] Vanderbilt Univ, Med Ctr, Nashville, TN 37203 USA
[6] Univ Illinois, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Raman spectroscopy; nanotechnology; surface plasmon resonance; RNA; REVERSE TRANSCRIPTASES; PROTEOMES; EXPRESSION; GENOME; AMPLIFICATION;
D O I
10.1021/acsphotonics.0c01486
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
RNA plays critical roles in guiding protein expression and catalyzing biological reactions. The gold standard RNA sequencing method requires converting RNA to complementary DNA (cDNA). This is followed by DNA amplification via polymerase chain reaction (PCR) and sequencing, making RNA sequencing indirect, complicated, and susceptible to sequence data bias. This paper demonstrates RNA imaging at the single-base level while illustrating a direct method to read RNA sequences by tip-enhanced Raman scattering (TERS) technique. To resolve nucleotides within an RNA strand, we adopted gap-mode TERS involving a gold tip and a gold substrate. After analyzing TERS measurements based on the reference sequence, we identified RNA sequences with 90% accuracy. This proof-of-principle RNA imaging method significantly advances a direct RNA sequencing technique without RNA labeling or reverse transcriptase RT-PCR amplification.
引用
收藏
页码:424 / 430
页数:7
相关论文
共 60 条
[1]   Coralsnake Venomics: Analyses of Venom Gland Transcriptomes and Proteomes of Six Brazilian Taxa [J].
Aird, Steven D. ;
da Silva, Nelson Jorge, Jr. ;
Qiu, Lijun ;
Villar-Briones, Alejandro ;
Saddi, Vera Aparecida ;
de Campos Telles, Mariana Pires ;
Grau, Miguel L. ;
Mikheyev, Alexander S. .
TOXINS, 2017, 9 (06)
[2]  
Ardekani Ali M., 2010, Avicenna Journal of Medical Biotechnology, V2, P161
[3]   Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules [J].
Bonhommeau, Sebastien ;
Lecomte, Sophie .
CHEMPHYSCHEM, 2018, 19 (01) :8-18
[4]   Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes [J].
Casimiro-Soriguer, Carlos S. ;
Munoz-Merida, Antonio ;
Perez-Pulido, Antonio J. .
PROTEOMICS, 2017, 17 (12)
[5]  
Chen C, 2014, NAT COMMUN, V5, DOI [10.1038/ncomms4312, 10.1038/ncomms4357]
[6]   Reverse transcriptase template switching and false alternative transcripts [J].
Cocquet, Julie ;
Chong, Allen ;
Zhang, Guanglan ;
Veitia, Reiner A. .
GENOMICS, 2006, 88 (01) :127-131
[7]   Tip-enhanced Raman spectroscopy - from early developments to recent advances [J].
Deckert-Gaudig, Tanja ;
Taguchi, Atsushi ;
Kawata, Satoshi ;
Deckert, Volker .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (13) :4077-4110
[8]   Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils [J].
Deckert-Gaudig, Tanja ;
Kurouski, Dmitry ;
Hedegaard, Martin A. B. ;
Singh, Pushkar ;
Lednev, Igor K. ;
Deckert, Volker .
SCIENTIFIC REPORTS, 2016, 6
[9]  
Evans VC, 2012, NAT METHODS, V9, P1207, DOI [10.1038/nmeth.2227, 10.1038/NMETH.2227]
[10]   Global Analysis and Comparison of the Transcriptomes and Proteomes of Group A Streptococcus Biofilms [J].
Freiberg, Jeffrey A. ;
Le Breton, Yoann ;
Tran, Bao Q. ;
Scott, Alison J. ;
Harro, Janette M. ;
Ernst, Robert K. ;
Goo, Young Ah ;
Mongodin, Emmanuel F. ;
Goodlett, David R. ;
McIver, Kevin S. ;
Shirtliff, Mark E. .
MSYSTEMS, 2016, 1 (06)