Bounded Toeplitz products on Bergman spaces of the unit ball

被引:20
作者
Stroethoff, Karel [1 ]
Zheng, Dechao
机构
[1] Univ Montana, Dept Math Sci, Missoula, MT 59812 USA
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
基金
美国国家科学基金会;
关键词
Toeplitz operator; Bergman spaces; unit ball;
D O I
10.1016/j.jmaa.2006.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the question for which square integrable analytic functions f and g on the unit ball the densely defined products T-f T ((g)) over bar are bounded on the weighted Bergman spaces. We prove results analogous to those we obtained in the setting of the unit disk and the polydisk. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 129
页数:16
相关论文
共 50 条
[31]   SUB-BERGMAN SPACES IN THE UNIT BALL OF Cn [J].
Symesak, Frederic .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (12) :4405-4411
[32]   On Hankel operators between Bergman spaces on the unit ball [J].
Bonami, A ;
Luo, L .
HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (03) :815-828
[33]   Compact Operators on Weighted Bergman Spaces of the Unit Ball [J].
Jun YANG 1 ;
2.School of Mathematical Sciences .
Journal of Mathematical Research with Applications, 2012, (01) :83-94
[34]   Characterizations of Admissible Weighted Bergman Spaces on the Unit Ball [J].
Ueki, Sei-Ichiro .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (01) :95-109
[35]   Characterizations of Admissible Weighted Bergman Spaces on the Unit Ball [J].
Sei-Ichiro Ueki .
Computational Methods and Function Theory, 2020, 20 :95-109
[36]   COMPACTNESS FOR TOEPLITZ AND HANKEL-OPERATORS ON WEIGHTED BERGMAN SPACES OF BALL IN C-N [J].
XIAO, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1993, 36 (10) :1153-1161
[37]   Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain [J].
Yamaji, Satoshi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (04) :1101-1115
[38]   Algebraic Properties of Toeplitz Operators with Radial Symbols on the Bergman Space of the Unit Ball [J].
Zhou, Ze-Hua ;
Dong, Xing-Tang .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2009, 64 (01) :137-154
[39]   Toeplitz operators on Bergman spaces with variable exponents [J].
Shen, Conghui ;
Li, Songxiao ;
Long, Sujuan .
GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (04) :671-681
[40]   Algebraic Properties of Toeplitz Operators with Radial Symbols on the Bergman Space of the Unit Ball [J].
Ze-Hua Zhou ;
Xing-Tang Dong .
Integral Equations and Operator Theory, 2009, 64 :137-154