Higher-order Fefferman-Poincare type inequalities and applications

被引:0
作者
Zhang, Kelei [1 ]
Niu, Pengcheng [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
higher-order Fefferman-Poincare type inequality; higher-order elliptic equation; potential; higher-order Stummel-Kato type class; L-p estimate;
D O I
10.1186/s13660-015-0914-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish higher-order Fefferman-Poincare type inequalities with a potential belonging to an appropriate higher-order Stummel-Kato type class introduced in this paper. As an application, we obtain a priori Lp estimates for solutions of higher-order elliptic equations with discontinuous coefficients of small BMO type and a potential belonging to the higher-order Stummel-Kato type class.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 21 条
[1]  
BOMAN J., 1982, Report No. 29
[2]   Global W 2, p estimates for nondivergence elliptic operators with potentials satisfying a reverse Holder condition [J].
Bramanti, M. ;
Brandolini, L. ;
Harboure, E. ;
Viviani, B. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (02) :339-362
[3]  
Buckley S, 1996, XVITH ROLF NEVANLINNA COLLOQUIUM, P91
[4]  
Chen WH, 2001, INTRO DIFFERENTIABLE
[5]  
CHIARENZA F., 1983, Proc. Amer. Math. Soc., V9, P407, DOI [10.2307/2048289, DOI 10.2307/2048289]
[7]   A Fefferman-Poincare type inequality for Carnot-Caratheodory vector fields [J].
Di Fazio, G ;
Zamboni, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (09) :2655-2660
[8]  
Di Fazio G., 2004, Lect. Notes Semin. Interdiscip. Mat, V3, P103
[9]   On the Lp-Solvability of Higher Order Parabolic and Elliptic Systems with BMO Coefficients [J].
Dong, Hongjie ;
Kim, Doyoon .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (03) :889-941
[10]   THE UNCERTAINTY PRINCIPLE [J].
FEFFERMAN, CL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 9 (02) :129-206