Geometry of intermittency in fully developed turbulence
被引:8
作者:
Queiros-Condé, D
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, EnglandUniv Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
Queiros-Condé, D
[1
]
机构:
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
来源:
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE
|
1999年
/
327卷
/
14期
关键词:
turbulence;
intermittency;
fractals;
D O I:
10.1016/S1287-4620(00)87509-2
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
A geometrical interpretation of intermittency in fully developed turbulence is realized through an hierarchy of fractal structures Omega(p), of dimensions Delta(p) linked each other by the relations Omega(p+1) subset of Omega(p) (i.e Delta(p+1) < Delta(p)) and gamma = (Delta(p+1) - Delta(infinity))/(Delta(p) - Delta(infinity)) with gamma = ((1 + 3/root 8)(1/3) + (1 - 3/root 8)(1/3))(3) and Delta(infinity) = 1 . This is obtained by the introduction of an entropy jump, defined at the scale r, Delta S-p(r) = ( Delta(p+1) - Delta(p)) In ( r/r(0)) characterizing the order level of each sub-structure Omega(p) and verifying a linear relation Delta S-p(r) = y Delta Sp-1(r). (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.