Forward-backward systems for expected utility maximization

被引:28
作者
Horst, Ulrich [1 ]
Hu, Ying [2 ]
Imkeller, Peter [1 ]
Reveillac, Anthony [3 ]
Zhang, Jianing [4 ]
机构
[1] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
[2] Univ Rennes 1, F-35042 Rennes, France
[3] Univ Paris 09, CEREMADE UMR CNRS 7534, F-75775 Paris 16, France
[4] Tech Univ Munich, Zentrum Math, D-85748 Garching, Germany
关键词
Forward-backward stochastic differential equations; Stochastic control; Convex duality theory; STOCHASTIC DIFFERENTIAL-EQUATIONS; OPTIMAL INVESTMENT; DUALITY;
D O I
10.1016/j.spa.2014.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we deal with the utility maximization problem with general utility functions including power utility with liability. We derive a new approach in which we reduce the resulting control problem to the study of a system of fully-coupled Forward-Backward Stochastic Differential Equations (FBSDEs) that promise to be accessible to numerical treatment. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1813 / 1848
页数:36
相关论文
共 38 条
[1]  
[Anonymous], MEM AM MATH SOC
[2]  
Atonelli F, 1993, Ann. Appl. Probab., V3, P777, DOI 10.1214/aoap/1177005363
[3]  
Biagini S., 2009, ENCY QUANTITATIVE FI
[4]   INDIFFERENCE PRICE WITH GENERAL SEMIMARTINGALES [J].
Biagini, Sara ;
Frittelli, Marco ;
Grasselli, Matheus .
MATHEMATICAL FINANCE, 2011, 21 (03) :423-446
[5]   INTRODUCTORY APPROACH TO DUALITY IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
SIAM REVIEW, 1978, 20 (01) :62-78
[6]   BSDE with quadratic growth and unbounded terminal value [J].
Briand, Philippe ;
Hu, Ying .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (04) :604-618
[7]  
Cvitanic J., 2001, Finance Stoch., V5, P259
[8]  
Cvitanic J., 1992, The Annals of Applied Probability, V2, P767, DOI 10.1214/aoap/1177005576
[9]   On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case [J].
Delarue, F .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 99 (02) :209-286
[10]  
Delbaen F, 2006, SPRINGER FINANCE, P3