Transport band gap opening at metal-organic interfaces

被引:6
|
作者
Haidu, Francisc [1 ]
Salvan, Georgeta [1 ]
Zahn, Dietrich R. T. [1 ]
Smykalla, Lars [1 ]
Hietschold, Michael [1 ]
Knupfer, Martin [2 ]
机构
[1] Tech Univ Chemnitz, D-09107 Chemnitz, Germany
[2] IFW Dresden, Elect & Opt Properties Dept, D-01171 Dresden, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2014年 / 32卷 / 04期
关键词
CHARGE-TRANSFER; SEMICONDUCTOR INTERFACES; INVERSE-PHOTOEMISSION; COPPER PHTHALOCYANINE; ELECTRONIC-STRUCTURE; SPIN INJECTION; FILMS; SPINTRONICS; SCIENCE; ENERGY;
D O I
10.1116/1.4882857
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interface formation between copper phthalocyanine (CuPc) and two representative metal substrates, i.e., Au and Co, was investigated by the combination of ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The occupied and unoccupied molecular orbitals and thus the transport band gap of CuPc are highly influenced by film thickness, i.e., molecule substrate distance. Due to the image charge potential given by the metallic substrates the transport band gap of CuPc "opens" from (1.4 +/- 0.3) eV for 1 nm thickness to (2.2 +/- 0.3) eV, and saturates at this value above 10 nm CuPc thickness. The interface dipoles with values of 1.2 eV and 1.0 eV for Au and Co substrates, respectively, predominantly depend on the metal substrate work functions. X-ray photoelectron spectroscopy measurements using synchrotron radiation provide detailed information on the interaction between CuPc and the two metal substrates. While charge transfer from the Au or Co substrate to the Cu metal center is present only at sub-monolayer coverages, the authors observe a net charge transfer from the molecule to the Co substrate for films in the nm range. Consequently, the Fermi level is shifted as in the case of a p-type doping of the molecule. This is, however, a competing phenomenon to the energy band shifts due to the image charge potential. (C) 2014 American Vacuum Society.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Band Gap Modulations in UiO Metal-Organic Frameworks
    Flage-Larsen, Espen
    Royset, Arne
    Cavka, Jasmina Hafizovic
    Thorshaug, Knut
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (40): : 20610 - 20616
  • [2] Band gap modulation of functionalized metal-organic frameworks
    Musho, Terence
    Li, Jiangtan
    Wu, Nianqiang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (43) : 23646 - 23653
  • [3] Linker Conformation Effects on the Band Gap in Metal-Organic Frameworks
    Flage-Larsen, Espen
    Thorshaug, Knut
    INORGANIC CHEMISTRY, 2014, 53 (05) : 2569 - 2572
  • [4] Metal-organic interfaces at the nanoscale
    Troadec, C
    Jie, D
    Kunardi, L
    O'Shea, SJ
    Chandrasekhar, N
    NANOTECHNOLOGY, 2004, 15 (12) : 1818 - 1824
  • [5] Coordination-Induced Band Gap Reduction in a Metal-Organic Framework
    Peeples, Craig A.
    Cetinkaya, Ahmet
    Tholen, Patrik
    Schmitt, Franz-Josef
    Zorlu, Yunus
    Yu, Kai Bin
    Yazaydin, Ozgur
    Beckmann, Jens
    Hanna, Gabriel
    Yucesan, Andog
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (08)
  • [6] Band gap engineering of metal-organic frameworks for solar fuel productions
    Guo, Xiangyang
    Liu, Lifang
    Xiao, Yu
    Qi, Yu
    Duan, Chunying
    Zhang, Fuxiang
    COORDINATION CHEMISTRY REVIEWS, 2021, 435
  • [7] Nanoscale studies on metal-organic interfaces
    Chandrasekhar, N.
    ELECTRON CORRELATION IN NEW MATERIALS AND NANOSYSTEMS, 2007, 241 : 9 - 21
  • [8] Slope parameters at metal-organic interfaces
    Zhou, Y. C.
    Tang, J. X.
    Liu, Z. T.
    Lee, C. S.
    Lee, S. T.
    APPLIED PHYSICS LETTERS, 2008, 93 (09)
  • [9] Unusually Large Band Gap Changes in Breathing Metal-Organic Framework Materials
    Ling, Sanliang
    Slater, Ben
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29): : 16667 - 16677
  • [10] Band alignment at metal/organic and metal/oxide/organic interfaces
    Helander, M. G.
    Wang, Z. B.
    Qiu, J.
    Lu, Z. H.
    APPLIED PHYSICS LETTERS, 2008, 93 (19)