Causal Network in a Deafferented Non-human Primate Brain

被引:0
|
作者
Balasubramanian, Karthikeyan [1 ]
Takahashi, Kazutaka [1 ]
Hatsopoulos, Nicholas G. [1 ,2 ]
机构
[1] Univ Chicago, Dept Organismal Biol & Anat, Chicago, IL 60637 USA
[2] Univ Chicago, Comm Computat Neurosci, Chicago, IL 60637 USA
来源
2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2015年
关键词
Causality analysis; non-human primates; Brain-machine Interface; Poisson point-process; neural dynamics; NEURAL ENSEMBLE;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
De-afferented/efferented neural ensembles can undergo causal changes when interfaced to neuroprosthetic devices. These changes occur via recruitment or isolation of neurons, alterations in functional connectivity within the ensemble and/or changes in the role of neurons, i.e., excitatory/inhibitory. In this work, emergence of a causal network and changes in the dynamics are demonstrated for a deafferented brain region exposed to BMI (brain-machine interface) learning. The BMI was controlling a robot for reach-and-grasp behavior. And, the motor cortical regions used for the BMI were deafferented due to chronic amputation, and ensembles of neurons were decoded for velocity control of the multi-DOF robot. A generalized linear model-framework based Granger causality (GLM-GC) technique was used in estimating the ensemble connectivity. Model selection was based on the AIC (Akaike Information Criterion).
引用
收藏
页码:59 / 62
页数:4
相关论文
共 50 条
  • [2] Proteomic characterization of the non-human primate brain
    Freeman, W.
    Michael, W.
    Vrana, K.
    Hopkins, W.
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S185 - S185
  • [3] Glucocerebrosidase expression patterns in the non-human primate brain
    Dopeso-Reyes, Iria G.
    Sucunza, Diego
    Rico, Alberto J.
    Pignataro, Diego
    Marin-Ramos, David
    Roda, Elvira
    Rodriguez-Perez, Ana I.
    Labandeira-Garcia, Jose L.
    Lanciego, Jose L.
    BRAIN STRUCTURE & FUNCTION, 2018, 223 (01): : 343 - 355
  • [4] Glucocerebrosidase expression patterns in the non-human primate brain
    Iria G. Dopeso-Reyes
    Diego Sucunza
    Alberto J. Rico
    Diego Pignataro
    David Marín-Ramos
    Elvira Roda
    Ana I. Rodríguez-Pérez
    José L. Labandeira-García
    José L. Lanciego
    Brain Structure and Function, 2018, 223 : 343 - 355
  • [5] Distribution of norepinephrine transporters in the non-human primate brain
    Smith, HR
    Beveridge, TJR
    Porrino, LJ
    NEUROSCIENCE, 2006, 138 (02) : 703 - 714
  • [6] Non-human primate models of neonatal brain injury
    Inder, T
    Neil, J
    Yoder, B
    Rees, S
    SEMINARS IN PERINATOLOGY, 2004, 28 (06) : 396 - 404
  • [7] HC-Net: A hybrid convolutional network for non-human primate brain extraction
    Fei, Hong
    Wang, Qianshan
    Shang, Fangxin
    Xu, Wenyi
    Chen, Xiaofeng
    Chen, Yifei
    Li, Haifang
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [8] ANDROGEN BINDING IN THE BRAIN-STEM OF THE NON-HUMAN PRIMATE
    SHERIDAN, PJ
    WEAKER, FJ
    ANATOMICAL RECORD, 1981, 199 (03): : A233 - A233
  • [9] Encephalopathy induced by Alzheimer brain inoculation in a non-human primate
    Gary, Charlotte
    Lam, Suzanne
    Herard, Anne-Sophie
    Koch, James E.
    Petit, Fanny
    Gipchtein, Pauline
    Sawiak, Stephen J.
    Caillierez, Raphaelle
    Eddarkaoui, Sabiha
    Colin, Morvane
    Aujard, Fabienne
    Deslys, Jean-Philippe
    Brouillet, Emmanuel
    Buee, Luc
    Comoy, Emmanuel E.
    Pifferi, Fabien
    Picq, Jean-Luc
    Dhenain, Marc
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2019, 7 (01): : 126
  • [10] Arousal effects on oscillatory dynamics in the non-human primate brain
    Anand, Shashank A.
    Sogukpinar, Fatih
    Monosov, Ilya E.
    CEREBRAL CORTEX, 2024, 34 (12)