Hele-Shaw problems in multidimensional spaces

被引:12
作者
Tian, FR [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s003329910011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Hele-Shaw problems in R-n for n greater than or equal to 3 with or without surface tension. Qualitatively, we generalize most of the analytic results in dimension two to dimension n. Quantitatively, we construct some exact solutions for both zero and nonzero surface tension. The latter solutions enable us to calculate the zero surface tension limit explicitly.
引用
收藏
页码:275 / 290
页数:16
相关论文
共 23 条
[1]  
[Anonymous], 1988, DYNAMICS CURVED FRON
[2]   HELE-SHAW TYPE FLOWS IN RN [J].
BEGEHR, H ;
GILBERT, RP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :65-85
[3]   GLOBAL-SOLUTIONS FOR SMALL DATA TO THE HELE-SHAW PROBLEM [J].
CONSTANTIN, P ;
PUGH, M .
NONLINEARITY, 1993, 6 (03) :393-415
[4]   A NUMERICAL STUDY OF THE EFFECT OF SURFACE-TENSION AND NOISE ON AN EXPANDING HELE-SHAW BUBBLE [J].
DAI, WS ;
SHELLEY, MJ .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (09) :2131-2146
[5]  
DUCHON J, 1984, ANN I H POINCARE-AN, V1, P361
[6]  
Epstein B., 1965, J ANAL MATH, V14, P109, DOI DOI 10.1007/BF02806381
[7]   INVERSE PROBLEMS OF POTENTIAL-THEORY AND FLOWS IN POROUS-MEDIA WITH TIME-DEPENDENT FREE-BOUNDARY [J].
ETINGOF, PI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (4-5) :93-99
[9]   ON A DIFFERENTIAL-EQUATION ARISING IN A HELE SHAW FLOW MOVING BOUNDARY-PROBLEM [J].
GUSTAFSSON, B .
ARKIV FOR MATEMATIK, 1984, 22 (02) :251-268
[10]   ON THE CLASSIFICATION OF SOLUTIONS TO THE ZERO-SURFACE-TENSION MODEL FOR HELE-SHAW FREE-BOUNDARY FLOWS [J].
HOHLOV, YE ;
HOWISON, SD .
QUARTERLY OF APPLIED MATHEMATICS, 1993, 51 (04) :777-789