Cyclin-Dependent Kinase Synthetic Lethality Partners in DNA Damage Response

被引:10
|
作者
Kciuk, Mateusz [1 ,2 ]
Gielecinska, Adrianna [1 ]
Mujwar, Somdutt [3 ]
Mojzych, Mariusz [4 ]
Kontek, Renata [1 ]
机构
[1] Univ Lodz, Dept Mol Biotechnol & Genet, Banacha 12-16, PL-90237 Lodz, Poland
[2] Univ Lodz, Doctoral Sch Exact & Nat Sci, Banacha St 12-16, PL-90237 Lodz, Poland
[3] Maharishi Markandeshwar Deemed Univ Mullana, MM Coll Pharm, Ambala 133207, India
[4] Siedlce Univ Nat Sci & Humanities, Dept Chem, 3 Maja 54, PL-08110 Siedlce, Poland
关键词
cyclin-dependent kinase (CDK); DNA damage response (DDR); inhibitor; MYC oncogene; poly (ADP-ribose) polymerase 1 (PARP-1); synthetic lethality; POLY(ADP-RIBOSE) POLYMERASE PARP; C-MYC; GENOMIC INSTABILITY; BREAST-CANCER; CELL LYMPHOMA; P53; REPLICATION; INHIBITION; CDK1; APOPTOSIS;
D O I
10.3390/ijms23073555
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Exploring the DNA damage response pathway for synthetic lethality
    Xin Xu
    Somaira Nowsheen
    Min Deng
    Genome Instability & Disease, 2023, 4 (2) : 98 - 120
  • [22] The radiosensitising effect of olomoucine derived synthetic cyclin-dependent kinase inhibitors
    Korinkova, G.
    Cwiertka, K.
    Paprskarova, M.
    Dzubak, P.
    Hajduch, M.
    NEOPLASMA, 2010, 57 (02) : 161 - 169
  • [23] A budding yeast G1 DNA damage checkpoint requires cyclin-dependent kinase.
    FitzGerald, JN
    Kron, SJ
    MOLECULAR BIOLOGY OF THE CELL, 1998, 9 : 112A - 112A
  • [24] Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates
    Loog, M
    Morgan, DO
    NATURE, 2005, 434 (7029) : 104 - 108
  • [25] Cyclin-Dependent Kinase Inhibition by Flavoalkaloids
    Jain, S. K.
    Bharate, S. B.
    Vishwakarma, R. A.
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2012, 12 (07) : 632 - 649
  • [26] Expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors in oligodendrogliomas in humans
    Fiano, V
    Ghimenti, C
    Schiffer, D
    NEUROSCIENCE LETTERS, 2003, 347 (02) : 111 - 115
  • [27] Flavopiridol, a cyclin-dependent kinase inhibitor
    Lansiaux, A
    Bailly, C
    BULLETIN DU CANCER, 2000, 87 (10) : 697 - 701
  • [28] Cyclin and cyclin-dependent kinase expression in the remnant glomerulus
    Shankland, SJ
    Hamel, P
    Scholey, JW
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 1997, 8 (03): : 368 - 375
  • [29] Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates
    Mart Loog
    David O. Morgan
    Nature, 2005, 434 : 104 - 108
  • [30] Novel cyclin-dependent kinase inhibitors
    Westwell, AD
    DRUG DISCOVERY TODAY, 2001, 6 (13) : 701 - 701