Performance and Cost Comparison of Cloud Services for Deep LearningWorkload

被引:11
作者
Chahal, Dheeraj [1 ]
Mishra, Mayank [1 ]
Palepu, Surya [1 ]
Singhal, Rekha [1 ]
机构
[1] TCS Res, Mumbai, Maharashtra, India
来源
COMPANION OF THE ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, ICPE 2021 | 2021年
关键词
Recommendation system; ML Platform; AWS SageMaker; cloud performance;
D O I
10.1145/3447545.3451184
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many organizations are migrating their on-premise artificial intelligence workloads to the cloud due to availability of cost-effective and highly scalable infrastructure, software and platform services. To ease the process of migration, many cloud vendors provide services, frameworks and tools that can be used for deployment of applications on cloud infrastructure. Finding the most appropriate service and infrastructure for a given application that results in a desired performance at minimal cost, is a challenge. In this work, we present a methodology to migrate a deep learning model based recommender system to ML platform and serverless architecture. Furthermore, we show our experimental evaluation of AWS ML platform called SageMaker and the serverless platform service known as Lambda. In our study, we also discuss performance and cost trade-off while using cloud infrastructure.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 17 条
[1]   TFX: A TensorFlow-Based Production-Scale Machine Learning Platform [J].
Baylor, Denis ;
Breck, Eric ;
Cheng, Heng-Tze ;
Fiedel, Noah ;
Foo, Chuan Yu ;
Haque, Zakaria ;
Haykal, Salem ;
Ispir, Mustafa ;
Jain, Vihan ;
Koc, Levent ;
Koo, Chiu Yuen ;
Lew, Lukasz ;
Mewald, Clemens ;
Modi, Akshay Naresh ;
Polyzotis, Neoklis ;
Ramesh, Sukriti ;
Roy, Sudip ;
Whang, Steven Euijong ;
Wicke, Martin ;
Wilkiewicz, Jarek ;
Zhang, Xin ;
Zinkevich, Martin .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :1387-1395
[2]   Using Application Knowledge to Reduce Cold Starts in FaaS Services [J].
Bermbach, David ;
Karakaya, Ahmet-Serdar ;
Buchholz, Simon .
PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, :134-143
[3]   BARISTA: Efficient and Scalable Serverless Serving System for Deep Learning Prediction Services [J].
Bhattacharjee, Anirban ;
Chhokra, Ajay Dev ;
Kang, Zhuangwei ;
Sun, Hongyang ;
Gokhale, Aniruddha ;
Karsai, Gabor .
2019 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2019, :23-33
[4]  
Chahal Dheeraj, 2020, 2020 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), P111, DOI 10.1109/ISSREW51248.2020.00047
[5]   Migrating a Recommendation System to Cloud Using ML Workflow [J].
Chahal, Dheeraj ;
Ojha, Ravi ;
Choudhury, Sharod Roy ;
Nambiar, Manoj .
ICPE'20: COMPANION OF THE ACM/SPEC INTERNATIONAL CONFERENCE ON PERFORMANCE ENGINEERING, 2020, :1-4
[6]  
Gupta P, 2021, Arxiv, DOI arXiv:1909.04276
[7]   Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective [J].
Hazelwood, Kim ;
Bird, Sarah ;
Brooks, David ;
Chintala, Soumith ;
Diril, Utku ;
Dzhulgakov, Dmytro ;
Fawzy, Mohamed ;
Jia, Bill ;
Jia, Yangqing ;
Kalro, Aditya ;
Law, James ;
Lee, Kevin ;
Lu, Jason ;
Noordhuis, Pieter ;
Smelyanskiy, Misha ;
Xiong, Liang ;
Wang, Xiaodong .
2018 24TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2018, :620-629
[8]   Serving deep learning models in a serverless platform [J].
Ishakian, Vatche ;
Muthusamy, Vinod ;
Slominski, Aleksander .
2018 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E 2018), 2018, :257-262
[9]   Elastic Machine Learning Algorithms in Amazon SageMaker [J].
Liberty, Edo ;
Karnin, Zohar ;
Xiang, Bing ;
Rouesnel, Laurence ;
Coskun, Baris ;
Nallapati, Ramesh ;
Delgado, Julio ;
Sadoughi, Amir ;
Astashonok, Yury ;
Das, Piali ;
Balioglu, Can ;
Chakravarty, Saswata ;
Jha, Madhav ;
Gautier, Philip ;
Arpin, David ;
Januschowski, Tim ;
Flunkert, Valentin ;
Wang, Yuyang ;
Gasthaus, Jan ;
Stella, Lorenzo ;
Rangapuram, Syama ;
Salinas, David ;
Schelter, Sebastian ;
Smola, Alex .
SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, :731-737
[10]  
Lin PM, 2019, Arxiv, DOI arXiv:1903.12221