Genotypic evaluation of twenty-eight high- and low-cyanide cassava in low-land tropics, southeast Nigeria

被引:5
作者
Mbah, Emmanuel Ukaobasi [1 ]
Nwankwo, Blessing Chinwoke [1 ]
Njoku, Damian Ndubuisi [2 ]
Gore, Michael A. [3 ]
机构
[1] Michael Okpara Univ Agr, Coll Crop & Soil Sci, Dept Agron, Umudike, Abia State, Nigeria
[2] Natl Root Crops Res Inst, Genet Resources Unit, Umudike, Nigeria
[3] Cornell Univ, Sch Integrat Plant Sci, Plant Breeding & Genet Sect, Ithaca, NY 14853 USA
关键词
Agriculture; Ecology; Plant biology; MOSAIC-VIRUS DISEASE; AGRONOMIC TRAITS; YIELD; GROWTH; GEMINIVIRUSES; EPIDEMIOLOGY; PRODUCTIVITY; POPULATIONS; RESPONSES; SEVERITY;
D O I
10.1016/j.heliyon.2019.e01855
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A two-year field experiment was carried out in a randomized complete block design with two replications in 2015/16 and 2016/17 cropping seasons at the National Root Crops Research Institute, Umudike (05 degrees 29'N; 07 degrees 33'E; 122 m above sea level) in Nigeria. The objectives of the study were to assess growth, disease status and yield responses of twenty-eight (28) newly developed high- and low-cyanide cassava genotypes in low-land humid tropics of Umudike, Nigeria. Plant height, stem girth, canopy diameter, number of leaves/plant, cassava mosaic disease (CMD) and cassava bacterial blight (CBB) incidence and severity as well as bulking rate and fresh root yield varied significantly (P < 0.05) amongst the high- and low-cyanide cassava genotypes in both cropping seasons. Also, the results showed that bitter cassava genotypes exhibited greater tolerance to CMD than sweet cassava. However, there was no significant (P > 0.05) difference in bulking rate and fresh root yield between the two groups. The Pearson's and Spearman's ranked associations between fresh root yield of the cassava genotypes and other variables analysed across the two cropping seasons were highly significant (P < 0.01) and positive contrary to the other variables. However, they exhibited different degrees of associations amongst themselves, especially CMD incidence that indicated highly significant and positive association with severity. The principal component analysis across the two cropping seasons indicated eigen-values of the four axes > unity with cumulative variance of 68.98 %. Most of the characters that contributed to the 22.35 % observed variability in principal component (PC1) were CMD incidence and severity, and number of leaves/plant while PC2 also exhibited high vector load from plant attributes such as number of leaves/plant, bulking rate ha(-1) and canopy diameter. The bi-plot clustering indicated that genotypes (BI-56, NR110439 and B1-29) exhibited strong similarity amongst themselves across the tested variables. The combined fresh root yield sequence of the first ten high yielder genotypes was in the order: NR110439 > TMS010354 > NR110315 > NR 110238 > NR 110228 > NR 060169 > BI-117 > BI-50 > NR110084 > NR 110181. These cassava genotypes were considered to be better endowed genetically, hence their improvement can be encouraged to ensure high and sustainable root yield. A poly-linear and positive regression was recorded between CMD and root yield as well as between CBB and root yield indicating that they affected fresh root yield of high- and low-cyanide cassava genotypes and demands attention also in cassava improvement studies.
引用
收藏
页数:9
相关论文
共 69 条
[1]  
Adams C, 2009, AMAZON PEASANT SOCIETIES IN A CHANGING ENVIRONMENT, P281, DOI 10.1007/978-1-4020-9283-1_13
[2]  
Adepoju O. T., 2010, African Journal of Food, Agriculture, Nutrition and Development, V10, P2099
[3]  
Afuape S. O., 2011, African Journal of Plant Science, V5, P123
[4]  
Akely P. M. T., 2007, P ACT C POT TRANSF M, P150
[5]   AN ANALYSIS OF GROWTH OF THE POTATO CROP [J].
ALLEN, EJ ;
SCOTT, RK .
JOURNAL OF AGRICULTURAL SCIENCE, 1980, 94 (JUN) :583-606
[6]  
Alves Alfredo Augusto Cunha, 2001, P67, DOI 10.1079/9780851995243.0067
[7]  
[Anonymous], 1980, STAT METHODS
[8]  
[Anonymous], 2007, SAS STAT US GUID 9 1
[9]  
[Anonymous], 1991, CODEX ALIMENTARIUS C
[10]  
Baafi E., 2008, Asian Journal of Agricultural Research, V2, P32