New Generalization of Hermite-Hadamard Type of Inequalities for Convex Functions Using Fourier Integral Transform

被引:0
作者
Mohanapriya, A. [1 ]
Ganesh, A. [2 ]
Rajchakit, G. [3 ]
Pinelas, Sandra [4 ]
Govindan, V. [5 ]
Unyong, Bundit [6 ]
Gunasekaran, Nallappan [7 ]
机构
[1] Adhiyamaan Coll Engn, Dept Math, Hosur, Tamil Nadu, India
[2] Govt Arts & Sci Coll, Dept Math, Hosur, Tamil Nadu, India
[3] Maejo Univ, Dept Math, Fac Sci, Chiang Mai 50290, Thailand
[4] Acad Mil, Dept Ciencias Exatas & Engn, Porto, Portugal
[5] Sri Vidya Mandir Arts & Sci Coll, Dept Math, Uthangarai, Tamil Nadu, India
[6] Phuket Rajabhat Univ, Fac Sci & Technol, Dept Math, Phuket 83000, Thailand
[7] Shibaura Inst Technol, Dept Math Sci, Saitama 3378570, Japan
来源
THAI JOURNAL OF MATHEMATICS | 2020年 / 18卷 / 03期
关键词
Fourier transform; convex functions; Hermite-Hadamard; inequalities; FEJER TYPE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove some new type of Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal inequalities for Fourier integral transform. These results pave the way to the researcher in obtaining complete unique functional inequalities for a well established inequalities in use and that involves convex functions.
引用
收藏
页码:1051 / 1061
页数:11
相关论文
共 24 条
[1]   Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals [J].
Ahmad, Bashir ;
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Torebek, Berikbol T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 :120-129
[2]  
[Anonymous], 2017, J ANAL-INDIA, DOI DOI 10.1007/S41478-017-0032-Y
[3]   Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals [J].
Chen, Feixiang .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 :121-128
[4]   Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals [J].
Chen, Hua ;
Katugampola, Udita N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) :1274-1291
[5]   A general multidimensional Hermite-Hadamard type inequality [J].
de la Cal, Jesus ;
Carcamo, Javier ;
Escauriaza, Luis .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :659-663
[6]   Characterization of real inner product spaces by Hermite-Hadamard type orthogonalities [J].
Dehghani, Mandi ;
Zamani, Ali .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :1364-1382
[7]   Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula [J].
Dragomir, SS ;
Agarwal, RP .
APPLIED MATHEMATICS LETTERS, 1998, 11 (05) :91-95
[8]  
Fejer L., 1906, NATURWISS ANZ UNGAR, V24, P369
[9]  
Ion DA, 2007, ANN UNIV CRAIOVA-MAT, V34, P83
[10]  
Islam M. M., 2013, J MATH RES, V5, P92