Complete Moment Convergence for Sung's Type Weighted Sums of B-Valued Random Elements

被引:0
作者
Li, Wei [1 ]
Chen, Pingyan [2 ]
Sung, Soo Hak [3 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Computat Sci, Guangzhou 510225, Guangdong, Peoples R China
[2] Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
[3] Pai Chai Univ, Dept Appl Math, Daejeon 302735, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
INDEPENDENT RANDOM ELEMENTS; STRONG LAW; RATES; REFINEMENT; ARRAYS; TAIL;
D O I
10.1155/2016/1484160
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p >= 1/alpha and 1/2 < alpha <= 1. Let {X, X-n, n >= 1} be a sequence of independent and identically distributed B-valued random elements and let {a(ni), 1 <= i <= n, n >= 1} be an array of real numbers satisfying Sigma(n)(i=1) vertical bar a(ni)vertical bar(q) = O(n) for some q > p. We give necessary and sufficient conditions for complete moment convergence of the form Sigma(infinity)(i=1) n((p-v)alpha-2) E{parallel to Sigma(n)(i=1) a(ni)X(i)parallel to - epsilon n(alpha)}(+)(v) < infinity, for all epsilon > 0, where 0 < v < p. A strong law of large numbers for weighted sums of independent B-valued random elements is also obtained.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 1991, Probability in Banach Spaces
[2]  
BAI ZD, 1985, SCI SIN A-MATH P A T, V28, P1261
[3]   Marcinkiewicz strong laws for linear statistics [J].
Bai, ZD ;
Cheng, PE .
STATISTICS & PROBABILITY LETTERS, 2000, 46 (02) :105-112
[4]   CONVERGENCE RATES IN LAW OF LARGE NUMBERS [J].
BAUM, LE ;
KATZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) :108-&
[5]  
Chen P., 2007, THEORY PROBABILITY M, V77, P165
[6]   Convergence rates for probabilities of moderate deviations for moving average processes [J].
Chen, Ping Yan ;
Wang, Ding Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) :611-622
[7]   L r convergence for B-valued random elements [J].
Chen, Ping Yan ;
Wang, Ding Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (04) :857-868
[8]   Complete moment convergence for sequences of independent random elements in Banach spaces [J].
Chen, Pingyan .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (05) :999-1010
[9]   On Complete Convergence and Strong Law for Weighted Sums of i.i.d. Random Variables [J].
Chen, Pingyan ;
Ma, Xiaofang ;
Sung, Soo Hak .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[10]   Limiting behaviour of moving average processes under φ-mixing assumption [J].
Chen, Pingyan ;
Hu, Tien-Chung ;
Volodin, Andrei .
STATISTICS & PROBABILITY LETTERS, 2009, 79 (01) :105-111