Stability of travelling multiple-front (multiple-back) wave solutions of the Fitzhugh-Nagumo equations

被引:16
|
作者
Nii, S
机构
关键词
travelling wave; eigenvalue problem; bifurcation;
D O I
10.1137/S003614109528829X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consideration is devoted to travelling multiple-front (back) wave solutions of the FitzHugh-Nagumo equations of bistable type. In particular, stability of the 1-front (back) wave is proven. In the proof, the eigenvalue problem for the 1-front wave bifurcating from coexisting simple front and back waves is regarded as a bifurcation problem for projectivized eigenvalue equations, rather than treated as a linear eigenvalue problem for each fixed wave.
引用
收藏
页码:1094 / 1112
页数:19
相关论文
共 50 条
  • [41] Near-Pulse Solutions of the FitzHugh-Nagumo Equations on Cylindrical Surfaces
    Talidou, A.
    Burchard, A.
    Sigal, I. M.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (03)
  • [42] Existence and Asymptotic Behaviors of Traveling Wave Solutions for the FitzHugh-Nagumo System
    Lin, Xiaojie
    Li, Chen
    Du, Zengji
    Wang, Ke
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [43] Existence of the solitary wave solutions supported by the modified FitzHugh-Nagumo system
    Gawlik, Aleksandra
    Vladimirov, Vsevolod
    Skurativskyi, Sergii
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2020, 25 (03): : 482 - 501
  • [44] Codimension two bifurcation in a coupled FitzHugh-Nagumo system with multiple delays
    Achouri, Houssem
    Aouiti, Chaouki
    Ben Hamed, Hassam
    CHAOS SOLITONS & FRACTALS, 2022, 156
  • [45] PERTURBATION ANALYSIS OF A SLOW PERIODIC-WAVE SOLUTION OF FITZHUGH-NAGUMO EQUATIONS
    OSAWA, T
    TADA, J
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1977, 43 (06) : 2087 - 2089
  • [46] MULTISCALE ANALYSIS FOR TRAVELING-PULSE SOLUTIONS TO THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS
    Eichinger, Katharina
    Gnann, Manuel V.
    Kuehn, Christian
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3229 - 3282
  • [47] Synchronization Analysis of Multiple FitzHugh-Nagumo Noisy and Nonnoisy Neurobiological Networks
    Ibrahim, Malik Muhammad
    Iram, Shazia
    Kamran, Muhammad Ahmad
    Mannan, Malik Muhammad Naeem
    Ali, Muhammad Umair
    Jung, Il Hyo
    Oh, Semin
    Kim, Sangil
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [48] Existence of Periodic Solutions of the FitzHugh-Nagumo Equations for an Explicit Range of the Small Parameter
    Czechowski, Aleksander
    Zgliczynski, Piotr
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (03): : 1615 - 1655
  • [49] The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation
    Hamadneh, Tareq
    Hioual, Amel
    Alsayyed, Omar
    Al-Khassawneh, Yazan Alaya
    Al-Husban, Abdallah
    Ouannas, Adel
    AXIOMS, 2023, 12 (09)
  • [50] Cole-Hopf quotient and exact solutions of the generalized Fitzhugh-Nagumo equations
    Chen, DY
    Gu, Y
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (01) : 7 - 14