Dynamics of a drop at a fluid interface under shear

被引:12
作者
Smith, KA
Ottino, JM
de la Cruz, MO
机构
[1] Northwestern Univ, Dept Chem Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 04期
关键词
D O I
10.1103/PhysRevE.69.046302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the dynamics of a two-dimensional drop lying on a fluid interface, sometimes called a liquid lens, subjected to simple shear flow. The three fluids, the drop and the two external fluids, meet at a triple point (or a triple line in three dimensions). A requirement for steady drop shapes is that the triple points are stationary. This leads to a flow topology different than that of a freely suspended drop. Results are substantiated with numerical results using a level set method for interface evolution and treatment of triple points. Possible implications for new drop instabilities are also discussed.
引用
收藏
页数:6
相关论文
共 30 条
[1]   POLYMER-POLYMER PHASE-BEHAVIOR [J].
BATES, FS .
SCIENCE, 1991, 251 (4996) :898-905
[2]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[3]  
BRYAN AJ, 2003, PHILOS T R SOC LON A, V361, P781
[4]   Complete wetting of gluons and gluinos [J].
Campos, A ;
Holland, K ;
Wiese, UJ .
PHYSICS LETTERS B, 1998, 443 (1-4) :338-346
[5]   Inertia, coarsening and fluid motion in binary mixtures [J].
Cates, ME ;
Kendon, VM ;
Bladon, P ;
Desplat, JC .
FARADAY DISCUSSIONS, 1999, 112 :1-11
[6]   A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J].
Chang, YC ;
Hou, TY ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) :449-464
[7]   A COMPUTER-SIMULATION TECHNIQUE FOR SPINODAL DECOMPOSITION AND ORDERING IN TERNARY-SYSTEMS [J].
CHEN, LQ .
SCRIPTA METALLURGICA ET MATERIALIA, 1993, 29 (05) :683-688
[8]   Contact line quadrilateral relation. Generalization of the Neumann triangle relation to include line tension [J].
Chen, P ;
Gaydos, J ;
Neumann, AW .
LANGMUIR, 1996, 12 (24) :5956-5962
[9]   Phase separation of binary mixtures in shear flow: A numerical study [J].
Corberi, F ;
Gonnella, G ;
Lamura, A .
PHYSICAL REVIEW E, 2000, 62 (06) :8064-8070
[10]   SPREADING OF LIQUIDS ON SOLID-SURFACES - STATIC AND DYNAMIC CONTACT LINES [J].
DUSSAN, EB .
ANNUAL REVIEW OF FLUID MECHANICS, 1979, 11 :371-400