A Fourier Pseudospectral Method for the "Good" Boussinesq Equation with Second-Order Temporal Accuracy

被引:64
作者
Cheng, Kelong [1 ]
Feng, Wenqiang [2 ]
Gottlieb, Sigal [3 ]
Wang, Cheng [3 ]
机构
[1] Southwest Univ Sci & Technol, Dept Math, Mianyang 621010, Sichuan, Peoples R China
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
基金
美国国家科学基金会;
关键词
aliasing error; fully discrete Fourier pseudospectral method; good Boussinesq equation; stability and convergence; FINITE-VOLUME SCHEME; SPECTRAL METHOD; CONVERGENCE ANALYSIS; VISCOSITY METHOD; APPROXIMATIONS; LEGENDRE; SOLITON;
D O I
10.1002/num.21899
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second-order time-stepping for the numerical solution of the " good" Boussinesq equation. Our analysis improves the existing results presented in earlier literature in two ways. First, l(infinity)(0, T *; H-2) convergence for the solution and l(infinity) (0, T*; l(2)) convergence for the timederivative of the solution are obtained in this article, instead of the l(infinity)(0, T*; l(2)) convergence for the solution and the l(infinity)(0, T*; H-2) convergence for the time-derivative, given in De Frutos, et al., Math Comput 57 (1991), 109-122. In addition, we prove that this method is unconditionally stable and convergent for the time step in terms of the spatial grid size, compared with a severe restriction time step restriction Delta t <= Ch(2) required by the proof in De Frutos, et al., Math Comput 57 (1991), 109-122. (C) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 202-224, 2015
引用
收藏
页码:202 / 224
页数:23
相关论文
共 56 条
[1]  
[Anonymous], SIAM J NUMER ANAL
[2]   The Adomian decomposition method for solving the Boussinesq equation arising in water wave propagation [J].
Attili, Basem S. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (06) :1337-1347
[3]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[4]   CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION [J].
Baskaran, A. ;
Lowengrub, J. S. ;
Wang, C. ;
Wise, S. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2851-2873
[5]  
Boyd J., 2001, Chebyshev and fourier spectral methods, V2nd
[6]   A second order numerical scheme for the improved Boussinesq equation [J].
Bratsos, A. G. .
PHYSICS LETTERS A, 2007, 370 (02) :145-147
[7]   A predictor-corrector scheme for the improved Boussinesq equation [J].
Bratsos, A. G. .
CHAOS SOLITONS & FRACTALS, 2009, 40 (05) :2083-2094
[8]  
Bressan N., 1986, Calcolo, V23, P265, DOI 10.1007/BF02576532
[9]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[10]  
CANUTO C.G., 2007, Spectral Methods, DOI DOI 10.1016/J.IJHEATMASSTRANSFER.2010.06.029