IRT Item Parameter Recovery With Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

被引:12
作者
Casabianca, Jodi M. [1 ]
Lewis, Charles [2 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Fordham Univ, Bronx, NY 10458 USA
关键词
item response theory; nonnormal distributions; marginal maximum likelihood; latent trait distribution; quadrature; loglinear smoothing; moments; EM algorithm; LATENT POPULATION-DISTRIBUTION; RESPONSE THEORY; SEMIPARAMETRIC ESTIMATION; TRAIT MODELS; EM ALGORITHM; DISTRIBUTIONS; MULTILOG; BINARY; SCORE;
D O I
10.3102/1076998615606112
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation with LLS embedded and compares LLS to other latent trait distribution specifications, a fixed normal distribution, and the empirical histogram solution, in terms of IRT item parameter recovery. Simulation study results using a 3-parameter logistic model reveal that LLS models matching four or five moments are optimal in most cases. Examples with empirical data compare LLS to these approaches as well as Ramsay-curve IRT.
引用
收藏
页码:547 / 578
页数:32
相关论文
共 59 条
[1]  
Akaike H., 1973, 2 INT S INFORM THEOR, P267
[2]   ESTIMATING PARAMETERS OF LATENT POPULATION DISTRIBUTION [J].
ANDERSEN, E ;
MADSEN, M .
PSYCHOMETRIKA, 1977, 42 (03) :357-374
[3]  
[Anonymous], **NON-TRADITIONAL**
[4]  
[Anonymous], TECHNICAL REPORT
[5]  
BOCK RD, 1970, PSYCHOMETRIKA, V35, P179
[6]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[7]  
BOULET JR, 1996, THESIS
[8]  
Cai L., 2013, flexMIRT version 2: Flexible multilevel multidimensional item analysis and test scoring
[9]   A Two-Tier Full-Information Item Factor Analysis Model with Applications [J].
Cai, Li .
PSYCHOMETRIKA, 2010, 75 (04) :581-612
[10]   CHARACTERIZING THE MANIFEST PROBABILITIES OF LATENT TRAIT MODELS [J].
CRESSIE, N ;
HOLLAND, PW .
PSYCHOMETRIKA, 1983, 48 (01) :129-141