A model for the bus system in Cuernavaca (Mexico)

被引:37
作者
Baik, Jinho [1 ]
Borodin, Alexei
Deift, Percy
Suidan, Toufic
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] NYU, Courant Inst Math Sci, New York, NY USA
[4] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 28期
关键词
D O I
10.1088/0305-4470/39/28/S11
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The bus system in Cuernavaca, Mexico and its connections to random matrix distributions have been the subject of an interesting recent study by M Krbalek and P Seba in [15, 16]. In this paper we introduce and analyse a microscopic model for the bus system. We show that introducing a natural repulsion does produce random matrix distributions in natural double scaling regimes. The techniques employed include non-intersecting paths, logarithmic potential theory, determinantal point processes, and asymptotic analysis of several orthogonal polynomial ensembles. In addition, we introduce a circular bus model and include various calculations of non-crossing probabilities.
引用
收藏
页码:8965 / 8975
页数:11
相关论文
共 16 条
[1]  
[Anonymous], USPEKHI MAT NAUK, DOI 10.4213/rm321
[2]   Eynard-Mehta theorem, schur process, and their pfaffian analogs [J].
Borodin, A ;
Rains, EM .
JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) :291-317
[3]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.3.CO
[4]  
2-R
[5]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO
[6]  
2-1
[7]   Matrices coupled in a chain: I. Eigenvalue correlations [J].
Eynard, B ;
Mehta, ML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (19) :4449-4456
[8]   Non-intersecting paths, random tilings and random matrices [J].
Johansson, K .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (02) :225-280
[9]  
Karlin S., 1959, PAC J MATH, V9, P1141
[10]   EIGENVALUES OF THE LAGUERRE PROCESS AS NON-COLLIDING SQUARED BESSEL PROCESSES [J].
Koenig, Wolfgang ;
O'Connell, Neil .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2001, 6 :107-114