A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS

被引:0
|
作者
Jarraya, Aida [1 ,2 ]
Masmoudi, Afif [1 ]
Leray, Philippe [2 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, France
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among existing Bayesian network (BN) parametrizations, conditional Gaussian are able to deal with discrete and continuous variables. Bayesian estimation of conditional Gaussian parameter needs to define several a priori parameters which are not easily understandable or interpretable for users. The approach we propose here is free from this priors definition. We use the Implicit estimation method which offers a substantial computational advantage for learning from observations without prior knowledge and thus provides a good alternative to Bayesian estimation when priors are missing. We illustrate the interest of such estimation method by first giving the Bayesian Expectation A Posteriori estimator (EAP) for conditional Gaussian parameters. We then describe the Implicit estimator for the same parameters. One experimental study is proposed in order to compare both approaches.
引用
收藏
页码:887 / 893
页数:7
相关论文
共 50 条
  • [41] ADAPTIVE BAYESIAN ESTIMATION OF CONDITIONAL DENSITIES
    Norets, Andriy
    Pati, Debdeep
    ECONOMETRIC THEORY, 2017, 33 (04) : 980 - 1012
  • [42] A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation
    Nitzan, Eyal
    Routtenberg, Tirza
    Tabrikian, Joseph
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (01) : 229 - 243
  • [43] Bayesian Parameter Estimation in LDA
    Liu, Z. Y.
    Wang, W. P.
    Wang, Y.
    Lu, W. Y.
    Ji, Z. Z.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 837 - 840
  • [44] BAYESIAN ESTIMATION OF BINOMIAL PARAMETER
    DRAPER, N
    GUTTMAN, I
    TECHNOMETRICS, 1971, 13 (03) : 667 - &
  • [45] Objective Bound Conditional Gaussian Process for Bayesian Optimization
    Jeong, Taewon
    Kim, Heeyoung
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [46] BAYESIAN PARAMETER-ESTIMATION
    KRAMER, SC
    SORENSON, HW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) : 217 - 222
  • [47] BAYESIAN ESTIMATION FOR THE MULTIFRACTALITY PARAMETER
    Wendt, Herwig
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Abry, Patrice
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6556 - 6560
  • [48] Conditional Independence in Testing Bayesian Networks
    Shen, Yujia
    Huang, Haiying
    Choi, Arthur
    Darwiche, Adnan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [49] Conditional Bayesian Networks for Action Detection
    Khan, Furgan M.
    Lee, Sung Chun
    Nevatia, Ram
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 256 - 262
  • [50] On conditional truncated densities Bayesian networks
    Gonzales, Christophe (Christophe.Gonzales@lip6.fr), 1600, Elsevier Inc. (92):