A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS

被引:0
|
作者
Jarraya, Aida [1 ,2 ]
Masmoudi, Afif [1 ]
Leray, Philippe [2 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, France
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among existing Bayesian network (BN) parametrizations, conditional Gaussian are able to deal with discrete and continuous variables. Bayesian estimation of conditional Gaussian parameter needs to define several a priori parameters which are not easily understandable or interpretable for users. The approach we propose here is free from this priors definition. We use the Implicit estimation method which offers a substantial computational advantage for learning from observations without prior knowledge and thus provides a good alternative to Bayesian estimation when priors are missing. We illustrate the interest of such estimation method by first giving the Bayesian Expectation A Posteriori estimator (EAP) for conditional Gaussian parameters. We then describe the Implicit estimator for the same parameters. One experimental study is proposed in order to compare both approaches.
引用
收藏
页码:887 / 893
页数:7
相关论文
共 50 条
  • [31] Bayesian Parameter Estimation
    Simoen, E.
    Lombaert, G.
    IDENTIFICATION METHODS FOR STRUCTURAL HEALTH MONITORING, 2016, 567 : 89 - 115
  • [32] PARAMETER ESTIMATION BY IMPLICIT SAMPLING
    Morzfeld, Matthias
    Tu, Xuemin
    Wilkening, Jon
    Chorin, Alexandre J.
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2015, 10 (02) : 205 - 225
  • [33] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-Lopez, Dario
    Masegosa, Andres R.
    Salmeron, Antonio
    Rumi, Rafael
    Langseth, Helge
    Nielsen, Thomas D.
    Madsen, Anders L.
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 100 : 115 - 134
  • [34] Scalable importance sampling estimation of Gaussian mixture posteriors in Bayesian networks
    Ramos-López, Darío (dramoslopez@ual.es), 1600, Elsevier Inc. (100):
  • [35] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Gabbard, Hunter
    Messenger, Chris
    Heng, Ik Siong
    Tonolini, Francesco
    Murray-Smith, Roderick
    NATURE PHYSICS, 2022, 18 (01) : 112 - +
  • [36] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Hunter Gabbard
    Chris Messenger
    Ik Siong Heng
    Francesco Tonolini
    Roderick Murray-Smith
    Nature Physics, 2022, 18 : 112 - 117
  • [37] Gaussian Process Conditional Density Estimation
    Dutordoir, Vincent
    Salimbeni, Hugh
    Deisenroth, Marc Peter
    Hensman, James
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [38] Computation of the posterior entropy in a Bayesian framework for parameter estimation in biological networks
    Kramer, Andrei
    Hasenauer, Jan
    Allgoewer, Frank
    Radde, Nicole
    2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 493 - 498
  • [39] A new Bayesian method for estimation of value at risk and conditional value at risk
    Martin, Jacinto
    Parra, M. Isabel
    Pizarro, Mario M.
    Sanjuan, Eva L.
    EMPIRICAL ECONOMICS, 2025, 68 (03) : 1171 - 1189
  • [40] Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
    Everitt, Richard G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 940 - 960