A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS

被引:0
作者
Jarraya, Aida [1 ,2 ]
Masmoudi, Afif [1 ]
Leray, Philippe [2 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, France
来源
UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING | 2012年 / 7卷
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among existing Bayesian network (BN) parametrizations, conditional Gaussian are able to deal with discrete and continuous variables. Bayesian estimation of conditional Gaussian parameter needs to define several a priori parameters which are not easily understandable or interpretable for users. The approach we propose here is free from this priors definition. We use the Implicit estimation method which offers a substantial computational advantage for learning from observations without prior knowledge and thus provides a good alternative to Bayesian estimation when priors are missing. We illustrate the interest of such estimation method by first giving the Bayesian Expectation A Posteriori estimator (EAP) for conditional Gaussian parameters. We then describe the Implicit estimator for the same parameters. One experimental study is proposed in order to compare both approaches.
引用
收藏
页码:887 / 893
页数:7
相关论文
共 5 条
  • [1] Causal inference in biomolecular pathways using a Bayesian network approach and an Implicit method
    Ben Hassen, Hanen
    Masmoudi, Afif
    Rebai, Ahmed
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2008, 253 (04) : 717 - 724
  • [2] Inference in Signal Transduction Pathways Using EM Algorithm and an Implicit Algorithm: Incomplete Data Case
    Ben Hassen, Hanen
    Masmoudi, Afif
    Rebai, Ahmed
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2009, 16 (09) : 1227 - 1240
  • [3] Implicit distributions and estimation
    Hassairi, A
    Masmoudi, A
    Kokonendji, CC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (02) : 245 - 252
  • [4] Murphy Kevin P., 2003, FITTING CONDITIONAL
  • [5] Neapolitan RE., 2003, Learning Bayesian networks