A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS

被引:0
|
作者
Jarraya, Aida [1 ,2 ]
Masmoudi, Afif [1 ]
Leray, Philippe [2 ]
机构
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, France
关键词
INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Among existing Bayesian network (BN) parametrizations, conditional Gaussian are able to deal with discrete and continuous variables. Bayesian estimation of conditional Gaussian parameter needs to define several a priori parameters which are not easily understandable or interpretable for users. The approach we propose here is free from this priors definition. We use the Implicit estimation method which offers a substantial computational advantage for learning from observations without prior knowledge and thus provides a good alternative to Bayesian estimation when priors are missing. We illustrate the interest of such estimation method by first giving the Bayesian Expectation A Posteriori estimator (EAP) for conditional Gaussian parameters. We then describe the Implicit estimator for the same parameters. One experimental study is proposed in order to compare both approaches.
引用
收藏
页码:887 / 893
页数:7
相关论文
共 50 条
  • [1] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Aida Jarraya
    Philippe Leray
    Afif Masmoudi
    International Journal of Computational Intelligence Systems, 2014, 7 : 6 - 17
  • [2] Implicit parameter estimation for conditional Gaussian Bayesian networks
    Jarraya, Aida
    Leray, Philippe
    Masmoudi, Afif
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 : 6 - 17
  • [3] BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
    Gan, Lingrui
    Narisetty, Naveen
    Liang, Feng
    STATISTICA SINICA, 2022, 32 (01) : 131 - 152
  • [4] Parameter Learning for Hybrid Bayesian Networks With Gaussian Mixture and Dirac Mixture Conditional Densities
    Krauthausen, Peter
    Hanebeck, Uwe D.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 480 - 485
  • [5] Local propagation in conditional Gaussian Bayesian networks
    Cowell, RG
    JOURNAL OF MACHINE LEARNING RESEARCH, 2005, 6 : 1517 - 1550
  • [6] Online Updating of Conditional Linear Gaussian Bayesian Networks
    Madsen, Anders L.
    Olesen, Kristian G.
    Jensen, Frank
    Henriksen, Per
    Larsen, Thomas M.
    Moller, Jorn M.
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 186, 2022, 186
  • [7] Parameter estimation via conditional expectation: a Bayesian inversion
    Matthies H.G.
    Zander E.
    Rosić B.V.
    Litvinenko A.
    Advanced Modeling and Simulation in Engineering Sciences, 3 (1)
  • [8] Bayesian parameter estimation using Gaussian states and measurements
    Morelli, Simon
    Usui, Ayaka
    Agudelo, Elizabeth
    Friis, Nicolai
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
  • [9] Gaussian process regression and conditional polynomial chaos for parameter estimation
    Li, Jing
    Tartakovsky, Alexre M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 416
  • [10] Active learning for parameter estimation in Bayesian networks
    Tong, S
    Koller, D
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 647 - 653