A NEW "IMPLICIT" PARAMETER ESTIMATION FOR CONDITIONAL GAUSSIAN BAYESIAN NETWORKS
被引:0
作者:
Jarraya, Aida
论文数: 0引用数: 0
h-index: 0
机构:
Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, FranceSfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
Jarraya, Aida
[1
,2
]
Masmoudi, Afif
论文数: 0引用数: 0
h-index: 0
机构:
Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, TunisiaSfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
Masmoudi, Afif
[1
]
Leray, Philippe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, FranceSfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
Leray, Philippe
[2
]
机构:
[1] Sfax Univ, Fac Sci Sfax, Lab Probabil & Stat, BP 1171, Sfax, Tunisia
[2] Univ Nantes, Knowledge & Decis Team, LINA Comp Sci Lab, UMR 6241, Nantes, France
来源:
UNCERTAINTY MODELING IN KNOWLEDGE ENGINEERING AND DECISION MAKING
|
2012年
/
7卷
关键词:
INFERENCE;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Among existing Bayesian network (BN) parametrizations, conditional Gaussian are able to deal with discrete and continuous variables. Bayesian estimation of conditional Gaussian parameter needs to define several a priori parameters which are not easily understandable or interpretable for users. The approach we propose here is free from this priors definition. We use the Implicit estimation method which offers a substantial computational advantage for learning from observations without prior knowledge and thus provides a good alternative to Bayesian estimation when priors are missing. We illustrate the interest of such estimation method by first giving the Bayesian Expectation A Posteriori estimator (EAP) for conditional Gaussian parameters. We then describe the Implicit estimator for the same parameters. One experimental study is proposed in order to compare both approaches.