Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor

被引:0
作者
Wang, X. J. [1 ]
Buyanova, I. A. [1 ]
Zhao, F. [2 ]
Lagarde, D. [2 ]
Balocchi, A. [2 ]
Marie, X. [2 ]
Tu, C. W. [3 ]
Harmand, J. C. [4 ]
Chen, W. M. [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
[2] Univ Toulouse, CNRS, UPS, INSA,LPCNO, F-31077 Toulouse, France
[3] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[4] LPN, F-91460 Marcoussis, France
基金
瑞典研究理事会;
关键词
DEPENDENT RECOMBINATION; SPINTRONICS; RESONANCE; INJECTION; GAAS; ELECTRONICS; RELAXATION; SILICON;
D O I
10.1038/NMAT2385
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generating, manipulating and detecting electron spin polarization and coherence at room temperature is at the heart of future spintronics and spin-based quantum information technology(1-4). Spin filtering, which is a key issue for spintronic applications, has been demonstrated by using ferromagnetic metals(5-8), diluted magnetic semiconductors(9,10), quantum point contacts(11), quantum dots(12), carbon nanotubes(13), multiferroics(14) and so on. This filtering effect was so far restricted to a limited efficiency and primarily at low temperatures or under a magnetic field. Here, we provide direct and unambiguous experimental proof that an electron-spin-polarized defect, such as a Ga-i self-interstitial in dilute nitride GaNAs, can effectively deplete conduction electrons with an opposite spin orientation and can thus turn the non-magnetic semiconductor into an efficient spin filter operating at room temperature and zero magnetic field. This work shows the potential of such defect-engineered, switchable spin filters as an attractive alternative to generate, amplify and detect electron spin polarization at room temperature without a magnetic material or external magnetic fields.
引用
收藏
页码:198 / 202
页数:5
相关论文
共 29 条
[1]   Challenges for semiconductor spintronics [J].
Awschalom, David D. ;
Flatte, Michael E. .
NATURE PHYSICS, 2007, 3 (03) :153-159
[2]   ELECTRONIC-STRUCTURE, TOTAL ENERGIES, AND ABUNDANCES OF THE ELEMENTARY POINT-DEFECTS IN GAAS [J].
BARAFF, GA ;
SCHLUTER, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (12) :1327-1330
[3]  
Buyanova I., 2004, Physics and applications of dilute nitrides
[4]   The emergence of spin electronics in data storage [J].
Chappert, Claude ;
Fert, Albert ;
Van Dau, Frederic Nguyen .
NATURE MATERIALS, 2007, 6 (11) :813-823
[5]   Applications of optically detected magnetic resonance in semiconductor layered structures [J].
Chen, WMM .
THIN SOLID FILMS, 2000, 364 (1-2) :45-52
[6]  
DYAKONOV MI, 1986, SOV PHYS SEMICOND+, V20, P110
[7]   Injection and detection of a spin-polarized current in a light-emitting diode [J].
Fiederling, R ;
Keim, M ;
Reuscher, G ;
Ossau, W ;
Schmidt, G ;
Waag, A ;
Molenkamp, LW .
NATURE, 1999, 402 (6763) :787-790
[8]   A gate-controlled bidirectional spin filter using quantum coherence [J].
Folk, JA ;
Potok, RM ;
Marcus, CM ;
Umansky, V .
SCIENCE, 2003, 299 (5607) :679-682
[9]   Tunnel junctions with multiferroic barriers [J].
Gajek, Martin ;
Bibes, Manuel ;
Fusil, Stephane ;
Bouzehouane, Karim ;
Fontcuberta, Josep ;
Barthelemy, Agnes ;
Fert, Albert .
NATURE MATERIALS, 2007, 6 (04) :296-302
[10]   Detection of spin-polarized electrons injected into a two-dimensional electron gas [J].
Hammar, PR ;
Johnson, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (06) :4