Entropies and weak solutions of the compressible isentropic Euler equations

被引:6
作者
Chen, GQ
Lefloch, PG
机构
[1] ECOLE POLYTECH,CTR MATH APPL,F-91128 PALAISEAU,FRANCE
[2] ECOLE POLYTECH,CNRS,UA 756,F-91128 PALAISEAU,FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 324卷 / 10期
关键词
D O I
10.1016/S0764-4442(97)87895-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we study the system of isentropic Euler equations for compressible fluids, with a general equation of state. We establish the existence of the fundamental kernel that generates the family of weak entropies, and study its singularities. The kernel is the solution of an equation of Euler-Poisson-Darboux type, and its partial derivative with respect to the density variable tends to a Dirac measure as the density approaches zero. We prove a new reduction theorem for the Young measures associated with the compressible Euler system. From these results, we deduce the existence, compactness, and asymptotic decay of measurable and bounded entropy solutions.
引用
收藏
页码:1105 / 1110
页数:6
相关论文
共 17 条
[1]   ENTROPY FLUX-SPLITTINGS FOR HYPERBOLIC CONSERVATION-LAWS .1. GENERAL FRAMEWORK [J].
CHEN, GQ ;
LEFLOCH, PG .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (07) :691-729
[2]   Global solutions to the compressible Euler equations with geometrical structure [J].
Chen, GQ ;
Glimm, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (01) :153-193
[3]   CONVERGENCE OF THE LAX-FRIEDRICHS SCHEME FOR ISENTROPIC GAS-DYNAMICS .3. [J].
CHEN, GQ .
ACTA MATHEMATICA SCIENTIA, 1986, 6 (01) :75-120
[4]  
CHEN GQ, 1990, MSRI0052791 MATH SCI
[5]  
CHEN GQ, 1997, ENTROPY KERNEL ENTRO
[6]  
CHEN GQ, 1988, ACTA MATH SCI, V8, P243
[7]  
DalMaso G, 1995, J MATH PURE APPL, V74, P483
[8]  
DING X, 1989, ACTA MATH SCI, V8, P61
[9]  
DING X, 1985, ACTA MATH SCI, V5, P483
[10]  
Ding X., 1985, ACTA MATH SCI, V5B, P501