Anchorable Perylene Diimides as Chemically Inert Electron Transport Layer for Efficient and Stable Perovskite Solar Cells with High Reproducibility

被引:19
作者
Ye, Fangyuan [1 ,2 ]
Zhang, Diwei [1 ,2 ]
Xu, Xiaojia [1 ,2 ]
Guo, Huanxin [1 ,2 ]
Liu, Shuaijun [1 ,2 ]
Zhang, Shuo [1 ,2 ]
Wu, Yongzhen [1 ,2 ]
Zhu, Wei-Hong [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Inst Fine Chem, Key Lab Adv Mat,Frontiers Sci Ctr Materiobiol & D, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Joint Int Res Lab Precis Chem & Mol Engn, Shanghai Key Lab Funct Mat Chem, Inst Fine Chem,Sch Chem & Mol Engn,Frontiers Sci, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
electron transport layers; interfacial stabilities; perovskite solar cells; perylene diimides; reproducibilities; THIN-FILMS; LOW-TEMPERATURE; PERFORMANCE; EXTRACTION; INTERFACE; MAPBI(3); CONTACT;
D O I
10.1002/solr.202000736
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Oxide semiconductors like TiO2 and SnO2 are exclusively used to construct electron transport layer (ETL) in n-i-p-structured perovskite solar cells (PSCs). Despite high electron mobility and suitable energy levels, their complicated surface chemistry is detrimental to the interfacial stability as well as fabrication reproducibility. Alternatively, organic n-type semiconductors address these issues due to their defined molecular structures. Herein, the novel use of anchorable perylene diimides (PDI) and naphthalene diimide (NDI) as chemically inert ETLs is proposed to improve the stability and reproducibility of n-i-p-structured PSCs. Compared with NDI, the PDI analogues show more suitable lowest unoccupied molecular orbital (LUMO) energy levels (-4.1 vs. -3.8 eV) for matching the conduction band edge of metal halide perovskites, thus favoring the interfacial electron collection. The anchoring chains decorated on PDI entity are found to affect not only the solution processability of ETLs, but also the crystal quality of perovskites. More importantly, the interfacial perovskite decomposition is suppressed in such organic ETLs-based PSCs. These merits of the anchorable PDI-based ETLs enable approximate to 19% efficiency devices with excellent reproducibility and long-term stability, which outperform traditional TiO2-based n-i-p PSCs.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells [J].
Akbulatov, Azat F. ;
Frolova, Lyubov A. ;
Griffin, Monroe P. ;
Gearba, Ioana R. ;
Dolocan, Andrei ;
Vanden Bout, David A. ;
Tsarev, Sergey ;
Katz, Eugene A. ;
Shestakov, Alexander F. ;
Stevenson, Keith J. ;
Troshin, Pavel A. .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[2]   Effects of a Molecular Monolayer Modification of NiO Nanocrystal Layer Surfaces on Perovskite Crystallization and Interface Contact toward Faster Hole Extraction and Higher Photovoltaic Performance [J].
Bai, Yang ;
Chen, Haining ;
Xiao, Shuang ;
Xue, Qifan ;
Zhang, Teng ;
Zhu, Zonglong ;
Li, Qiang ;
Hu, Chen ;
Yang, Yun ;
Hu, Zhicheng ;
Huang, Fei ;
Wong, Kam Sing ;
Yip, Hin-Lap ;
Yang, Shihe .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2950-2958
[3]   Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells [J].
Bi, Cheng ;
Wang, Qi ;
Shao, Yuchuan ;
Yuan, Yongbo ;
Xiao, Zhengguo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2015, 6
[4]   Impact of charge transport layers on the photochemical stability of MAPbI3 in thin films and perovskite solar cells [J].
Boldyreva, A. G. ;
Akbulatov, A. F. ;
Elnaggar, M. ;
Luchkin, S. Yu ;
Danilov, A. V. ;
Zhidkov, I. S. ;
Yamilova, O. R. ;
Fedotov, Yu S. ;
Bredikhin, S. I. ;
Kurmaev, E. Z. ;
Stevenson, K. J. ;
Troshin, P. A. .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (10) :2705-2716
[5]   Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Shallcross, R. Clayton ;
Moot, Taylor ;
Kerner, Ross ;
Bertoluzzi, Luca ;
Onno, Arthur ;
Kavadiya, Shalinee ;
Chosy, Cullen ;
Wolf, Eli J. ;
Werner, Jeremie ;
Raiford, James A. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Berry, Joseph J. ;
Bent, Stacey F. ;
Holman, Zachary C. ;
Luther, Joseph M. ;
Ratcliff, Erin L. ;
Armstrong, Neal R. ;
McGehee, Michael D. .
JOULE, 2020, 4 (08) :1759-1775
[6]   Organic N-Type Molecule: Managing the Electronic States of Bulk Perovskite for High-Performance Photovoltaics [J].
Chen, Haiyang ;
Zhan, Yu ;
Xu, Guiying ;
Chen, Weijie ;
Wang, Shuhui ;
Zhang, Moyao ;
Li, Yaowen ;
Li, Yongfang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
[7]   Charge-transport layer engineering in perovskite solar cells [J].
Cheng, Ming ;
Zuo, Chuantian ;
Wu, Yongzhen ;
Li, Zhongan ;
Xu, Baomin ;
Hua, Yong ;
Ding, Liming .
SCIENCE BULLETIN, 2020, 65 (15) :1237-1241
[8]   A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell [J].
Cheng, Ming ;
Li, Yuanyuan ;
Liu, Peng ;
Zhang, Fuguo ;
Hajian, Alireza ;
Wang, Haoxin ;
Li, Jiajia ;
Wang, Linqin ;
Kloo, Lars ;
Yang, Xichuan ;
Sun, Licheng .
SOLAR RRL, 2017, 1 (05)
[9]   Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles [J].
Cheng, Yuanhang ;
Yang, Qing-Dan ;
Xiao, Jingyang ;
Xue, Qifan ;
Li, Ho-Wa ;
Guan, Zhiqiang ;
Yip, Hin-Lap ;
Tsang, Sai-Wing .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) :19986-19993
[10]   Transient photoconductivity in polymer bulk heterojunction solar cells: Competition between sweep-out and recombination [J].
Cowan, Sarah R. ;
Street, R. A. ;
Cho, Shinuk ;
Heeger, A. J. .
PHYSICAL REVIEW B, 2011, 83 (03)