An identity involving Bernoulli numbers and the Stirling numbers of the second kind

被引:0
|
作者
Jha, Sumit Kumar [1 ]
机构
[1] Int Inst Informat Technol, Hyderabad 500032, India
关键词
Bernoulli numbers; Stirling numbers of the second kind; Riemann zeta function; Polylogarithm function;
D O I
10.7546/nntdm.2020.26.3.160-162
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-n denote the Bernoulli numbers, and S(n, k) denote the Stirling numbers of the second kind. We prove the following identity Bm+n = Sigma(0 <= k <= n0 <= l <= m) (-1)k+1k!l!S(n,k) S(m,l)/k+1+1)(k+l/l) To the best of our knowledge, the identity is new.
引用
收藏
页码:160 / 162
页数:3
相关论文
共 50 条