Approximations for non-grey radiative transfer in numerical simulations of the solar photosphere

被引:79
作者
Vögler, A
Bruls, JHMJ
Schüssler, M
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[2] Kiepenheuer Inst Sonnenphys, D-79104 Freiburg, Germany
关键词
Sun : photosphere; radiative transfer; methods : numerical;
D O I
10.1051/0004-6361:20047043
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Realistic simulations of solar (magneto-)convection require an accurate treatment of the non-grey character of the radiative energy transport. Owing to the large number of spectral lines in the solar atmosphere, statistical representations of the line opacities have to be used in order to keep the problem numerically tractable. We consider two statistical approaches, the opacity distribution function (ODF) concept and the multigroup (or opacity binning) method and provide a quantitative assessment of the errors that arise from the application of these methods in the context of 2D/3D simulations. In a first step, the ODF- and multigroup methods are applied to a 1 D model-atmosphere and the resulting radiative heating rates are compared. A number of 4-6 frequency bins is found to warrant a satisfactory modeling of the radiative energy exchange. Further tests in 2D model-atmospheres show the applicability of the multigroup method in realistic situations and underline the importance of a non-grey treatment. Furthermore, we address the question of an appropriate opacity average in multigroup calculations and discuss the significance of velocity gradients for the radiative heating rates.
引用
收藏
页码:741 / 754
页数:14
相关论文
共 27 条
[1]   Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection [J].
Vögler, A .
ASTRONOMY & ASTROPHYSICS, 2004, 421 (02) :755-762
[2]   NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION [J].
Bach, Kiehunn .
JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2016, 49 (01) :1-8
[3]   Examining NHD versus QHD in the GCM THOR with non-grey radiative transfer for the hot Jupiter regime [J].
Noti, Pascal A. ;
Lee, Elspeth K. H. ;
Deitrick, Russell ;
Hammond, Mark .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 524 (03) :3396-3428
[4]   Assessment of the re-ordered wide band model for non-grey radiative transfer calculations in 3D enclosures [J].
Stroehle, Jochen .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (09) :1622-1640
[5]   A non-grey analytical model for irradiated atmospheres II. Analytical vs. numerical solutions [J].
Parmentier, Vivien ;
Guillot, Tristan ;
Fortney, Jonathan J. ;
Marley, Mark S. .
ASTRONOMY & ASTROPHYSICS, 2015, 574
[6]   DIAGNOSTICS OF DUST CONTENT IN SPIRAL GALAXIES - NUMERICAL SIMULATIONS OF RADIATIVE-TRANSFER [J].
BYUN, YI ;
FREEMAN, KC ;
KYLAFIS, ND .
ASTROPHYSICAL JOURNAL, 1994, 432 (01) :114-127
[7]   Evaluating Numerical Methods to Investigate Spectral Solar Radiative Transfer in Plant Canopies [J].
Moon, Zachary ;
Fuentes, Jose D. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (07)
[8]   Numerical non-LTE 3D radiative transfer using a multigrid method [J].
Bjorgen, Johan P. ;
Leenaarts, Jorrit .
ASTRONOMY & ASTROPHYSICS, 2017, 599
[9]   Non-LTE radiative transfer simulations: improved agreement of the double detonation with normal Type Ia supernovae [J].
Collins, Christine E. ;
Shingles, Luke J. ;
Sim, Stuart A. ;
Callan, Fionntan P. ;
Gronow, Sabrina ;
Hillebrandt, Wolfgang ;
Kromer, Markus ;
Pakmor, Ruediger ;
Roepke, Friedrich K. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 538 (03) :1289-1300
[10]   Solar atmosphere radiative transfer model comparison based on 3D MHD simulations [J].
Haberreiter, M. ;
Criscuoli, S. ;
Rempel, M. ;
Pereira, T. M. D. .
ASTRONOMY & ASTROPHYSICS, 2021, 653