Tuning of Delicate Host-Guest Interactions in Hydrated MIL-53 and Functional Variants for Furfural Capture from Aqueous Solution

被引:26
作者
Cao, Na [1 ,3 ]
Wang, Honglei [2 ]
Ban, Yujie [1 ]
Wang, Yuecheng [1 ,3 ]
Yang, Kun [1 ,3 ]
Zhou, Yingwu [1 ,3 ]
Zhao, Meng [1 ,3 ]
Deng, Weiqiao [2 ]
Yang, Weishen [1 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Catalysis, Dalian Inst Chem Phys, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Shandong Univ, Inst Mol Sci & Engn, Qingdao 266237, Peoples R China
[3] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
adsorption; furfural; host-guest interactions; metal-organic frameworks; separation; METAL-ORGANIC FRAMEWORKS; ADSORPTION; SEPARATION; CO2; PURIFICATION; MEMBRANES; SOLIDS;
D O I
10.1002/anie.202011678
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Capture of high-boiling-point furfural from diluted aqueous solution is a critical but challenging step in sustainable bio-refinery processes, but conventional separation methods such as distillation and liquid-liquid extraction requires prohibitive energy consumption. We report control over the microenvironment of hydrated MIL-53 and isoreticular variants with diversified functional terephthalic acid linkers for the purpose of preferential binding of furfural through delicate host-guest interactions. Methyl-bounded MIL-53 with improved binding energy in the hydrated form results in highly efficient capture ratio (ca. 98 %) in the extremely low concentration of furfural solution (0.5-3 wt %) and 100 % furfural specificity over xylose. The distinct hydrogen bonding sites and multiple Van de Wall interactions for furfural adsorption was testified by computational modeling. Furthermore, the recovery ratio of furfural reaches ca. 93 % in desorption.
引用
收藏
页码:1629 / 1634
页数:6
相关论文
共 52 条
[1]   A nanoporous adsorbent for removal of furfural from aqueous solutions [J].
Anbia, Mansoor ;
Mohammadi, Nourali .
DESALINATION, 2009, 249 (01) :150-153
[2]  
[Anonymous], 2017, ANGEW CHEM, DOI DOI 10.1002/ange.201708769
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P16322
[4]   Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges [J].
Bhatia, Shashi Kant ;
Jagtap, Sujit Sadashiv ;
Bedekar, Ashwini Ashok ;
Bhatia, Ravi Kant ;
Patel, Anil Kumar ;
Pant, Deepak ;
Banu, J. Rajesh ;
Rao, Christopher V. ;
Kim, Yun-Gon ;
Yang, Yung-Hun .
BIORESOURCE TECHNOLOGY, 2020, 300
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Breathing-induced new phase transition in an MIL-53(Al)-NH2 metal-organic framework under high methane pressures [J].
Bolinois, Linius ;
Kundu, Tanay ;
Wang, Xuerui ;
Wang, Yuxiang ;
Hu, Zhigang ;
Koh, Kenny ;
Zhao, Dan .
CHEMICAL COMMUNICATIONS, 2017, 53 (58) :8118-8121
[7]   Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited [J].
Bozell, Joseph J. ;
Petersen, Gene R. .
GREEN CHEMISTRY, 2010, 12 (04) :539-554
[8]   Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration [J].
Cadiau, Amandine ;
Belmabkhout, Youssef ;
Adil, Karim ;
Bhatt, Prashant M. ;
Pillai, Renjith S. ;
Shkurenko, Aleksander ;
Martineau-Corcos, Charlotte ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
SCIENCE, 2017, 356 (6339) :731-735
[9]   Quo Vadis, MOF? [J].
Caro, Juergen .
CHEMIE INGENIEUR TECHNIK, 2018, 90 (11) :1759-1768
[10]   Synergistic sorbent separation for one-step ethylene purification from a four-component mixture [J].
Chen, Kai-Jie ;
Madden, David G. ;
Mukherjee, Soumya ;
Pham, Tony ;
Forrest, Katherine A. ;
Kumar, Amrit ;
Space, Brian ;
Kong, Jie ;
Zhang, Qiu-Yu ;
Zaworotko, Michael J. .
SCIENCE, 2019, 366 (6462) :241-+