On the total chromatic edge stability number and the total chromatic subdivision number of graphs

被引:2
作者
Kemnitz, Arnfried [1 ]
Marangio, Massimiliano [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Computat Math, Univ Pl 2, D-38106 Braunschweig, Germany
关键词
total chromatic edge stability number; total chromatic subdivision number; total chromatic number; total coloring;
D O I
10.47443/dml.2021.111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proper total coloring of a graph G is an assignment of colors to the vertices and edges of G (together called the elements of G) such that neighbored elements-two adjacent vertices or two adjacent edges or a vertex and an incident edge-are colored differently. The total chromatic number chi ''(G) of G is defined as the minimum number of colors in a proper total coloring of G. In this paper, we study the stability of the total chromatic number of a graph with respect to two operations, namely removing edges and subdividing edges, which leads to the following two invariants. (i) The total chromatic edge stability number or chi ''-edge stability number es(chi '')(G) is the minimum number of edges of G whose removal results in a graph H subset of G with chi ''(H) not equal chi ''(G) or with E(H) = empty set. (ii) The total chromatic subdivision number or chi ''-subdivision number sd(chi '')(G) is the minimum number of edges of G whose subdivision results in a graph H subset of G with chi ''(H) not equal chi ''(G) or with E(H) not equal empty set. We prove general lower and upper bounds for es(chi '')(G). Moreover, we determine sd(chi '')(G) and sd(chi '')(G) for some classes of graphs.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 11 条
  • [1] Nordhaus-Gaddum and other bounds for the chromatic edge-stability number
    Akbari, Saieed
    Klavzar, Sandi
    Movarraei, Nazanin
    Nahvi, Mina
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2020, 84
  • [2] DOMINATION ALTERATION SETS IN GRAPHS
    BAUER, D
    HARARY, F
    NIEMINEN, J
    SUFFEL, CL
    [J]. DISCRETE MATHEMATICS, 1983, 47 (2-3) : 153 - 161
  • [3] Critical graphs for the chromatic edge-stability number
    Bresar, Bostjan
    Klavzar, Sandi
    Movarraei, Nazanin
    [J]. DISCRETE MATHEMATICS, 2020, 343 (06)
  • [4] Chartrand G, 2009, CRC DISCR MATH APPL, P1
  • [5] Hilton A. J. W., DISCRETE MATH
  • [6] THE TOTAL CHROMATIC NUMBER OF NEARLY COMPLETE BIPARTITE GRAPHS
    HILTON, AJW
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) : 9 - 19
  • [7] On the ρ-Subdivision Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (04) : 979 - 997
  • [8] ON THE ρ-EDGE STABILITY NUMBER OF GRAPHS
    Kemnitz, Arnfried
    Marangio, Massimiliano
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 249 - 262
  • [9] On the Chromatic Edge Stability Number of Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Movarraei, Nazanin
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1539 - 1551
  • [10] Staton W., 1980, Ars Combin., V10, P103