Optimal parallel verification of minimum spanning trees in logarithmic time

被引:13
作者
Dixon, B [1 ]
Tarjan, RE [1 ]
机构
[1] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
关键词
minimum spanning tree; network optimization; verification algorithms; sensitivity analysis;
D O I
10.1007/BF02523235
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present the first optimal parallel algorithms for the verification and sensitivity analysis of minimum spanning trees. Our algorithms are deterministic and run in 0 (log n) time and require linear-work in the CREW PRAM model. These algorithms are used as a subroutine in the linear-work randomized algorithm for finding minimum spanning trees of Cole, Klein, and Tarjan.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 16 条
[1]  
ALON N, UNPUB OPT PREPR ANSW
[2]  
AWERBUCH B, 1987, IEEE T COMPUT, V36, P1258, DOI 10.1109/TC.1987.1676869
[3]  
BOOTH H, 1990, TR768 YAL U DEP COMP
[4]  
COLE R, 1994, P 6 ACM S PAR ALG AR
[5]   VERIFICATION AND SENSITIVITY ANALYSIS OF MINIMUM SPANNING-TREES IN LINEAR TIME [J].
DIXON, B ;
RAUCH, M ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1992, 21 (06) :1184-1192
[6]   EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING-TREES IN UNDIRECTED AND DIRECTED-GRAPHS [J].
GABOW, HN ;
GALIL, Z ;
SPENCER, T ;
TARJAN, RE .
COMBINATORICA, 1986, 6 (02) :109-122
[7]   FAST ALGORITHMS FOR FINDING NEAREST COMMON ANCESTORS [J].
HAREL, D ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1984, 13 (02) :338-355
[8]  
JOHNSON DB, 1992, 4TH P ANN ACM S PAR, P363
[9]  
KARP RM, 1990, HDB THEORETICAL CO A, pCH17
[10]  
KING V, 1994, UNPUB SIMPLER MINIMU