Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries

被引:265
|
作者
Chen, Xuyong [1 ]
Wang, Liubin [1 ]
Li, Hang [1 ]
Cheng, Fangyi [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2019年 / 38卷
关键词
Aqueous zinc-ion batteries; Vanadium oxide; Insertion reaction; Phase transition; HYDROTHERMAL SYNTHESIS; PERFORMANCE; CHEMISTRY;
D O I
10.1016/j.jechem.2018.12.023
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Rechargeable aqueous zinc-ion batteries are recently gaining incremental attention because of low cost and material abundance, but their development is plagued by limited choice of cathode materials with satisfactory cycling performance. Here, we report a porous V2O5 nanofibers cathode with high Zn-storage performance in an aqueous Zn(CF3SO3)(2) electrolyte. We propose a reaction mechanism based on phase transition from orthorhombic V2O5 to zinc pyrovanadate on first discharging and reversible Zn2+ (de)intercalation in the open-structured hosts during subsequent cycling. This open and stable architecture enables a high reversible capacity of 319 mAh g(-1) at 20 mA g(-1) and a capacity retention of 81% over 500 cycles. The remarkable electrochemical performance makes V2O5 a promising cathode for aqueous zinc-ion batteries. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [1] Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries
    Xuyong Chen
    Liubin Wang
    Hang Li
    Fangyi Cheng
    Jun Chen
    Journal of Energy Chemistry , 2019, (11) : 20 - 25
  • [2] The Current Developments and Perspectives of V2O5 as Cathode for Rechargeable Aqueous Zinc-Ion Batteries
    Zhang, Wenwei
    Zuo, Chunli
    Tang, Chen
    Tang, Wen
    Lan, Binxu
    Fu, Xudong
    Dong, Shijie
    Luo, Ping
    ENERGY TECHNOLOGY, 2021, 9 (02)
  • [3] Facile hydrothermal synthesis of V2O5 nanofibers as cathode material for aqueous zinc-ion batteries
    Liu, Xiaodong
    Liu, Chunyang
    Wang, Zhiqiang
    Chen, Hongming
    Liu, Zijin
    Yang, Jiaqi
    Lau, Woon-Ming
    Zhou, Dan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 896
  • [4] Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries
    Volkov, A., I
    Sharlaev, A. S.
    Berezina, O. Ya
    Tolstopjatova, E. G.
    Fu, L.
    Kondratiev, V. V.
    MATERIALS LETTERS, 2022, 308
  • [5] Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries
    Hu, Ping
    Zhu, Ting
    Ma, Jingxuan
    Cai, Congcong
    Hu, Guangwu
    Wang, Xuanpeng
    Liu, Ziang
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2019, 55 (58) : 8486 - 8489
  • [6] A V2O5 cathode for aqueous rechargeable Pb-ion batteries
    Liu, Ningbo
    Zhao, Xiaoying
    Wang, Xiaohan
    Li, Qiaqia
    Wang, Liubin
    CHEMICAL COMMUNICATIONS, 2023, 59 (85) : 12719 - 12722
  • [7] Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries
    Wang, L.
    Zheng, J.
    MATERIALS TODAY ADVANCES, 2020, 7
  • [8] Synthesis of Hierarchical V2O5 Hydrate Composite Micronanostructures as Cathode Materials for Aqueous Zinc-ion Batteries with Good Performance
    Fei, Hailong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (08): : 1 - 13
  • [9] Disordered V12O26/V2O5 nanoflower composites as cathode for aqueous zinc-ion batteries
    Liu, Yanbo
    Zhenxin, Hui
    Zhao, Lijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 916
  • [10] Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries
    Mao, Fangfang
    Li, Yanwei
    Zou, Zhengguang
    Huang, Bin
    Yang, Jianwen
    Yao, Jinhuan
    ELECTROCHIMICA ACTA, 2021, 397