Nanoporous High-Entropy Alloy by Liquid Metal Dealloying

被引:38
作者
Okulov, Artem Vladimirovich [1 ]
Joo, Soo-Hyun [2 ,3 ]
Kim, Hyoung Seop [4 ]
Kato, Hidemi [2 ]
Okulov, Ilya Vladimirovich [2 ,5 ,6 ,7 ]
机构
[1] Helmholtz Zentrum Geesthacht, Inst Mat Res, Div Mat Mech, D-21502 Geesthacht, Germany
[2] Tohoku Univ, Inst Mat Res, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan
[3] Dankook Univ, Dept Mat Sci & Engn, 119 Dandae Ro, Cheonan 31116, South Korea
[4] Univ Sci & Technol, Dept Mat Sci & Engn Pohang, 77 Cheongam Ro, Pohang 37673, South Korea
[5] Ural Fed Univ, Inst Nat Sci & Math, Ekaterinburg 620000, Russia
[6] Univ Bremen, Fac Prod Engn, Badgasteiner Str 1, D-28359 Bremen, Germany
[7] Leibniz Inst Mat Engn IWT, Badgasteiner Str 3, D-28359 Bremen, Germany
关键词
high-entropy alloy; dealloying; liquid metal dealloying; nanoporous; catalysis; MICROSTRUCTURE; EVOLUTION; DIFFUSION; ELEMENTS; TINB; FE;
D O I
10.3390/met10101396
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy nanomaterials possessing high accessible surface areas have demonstrated outstanding catalytic performance, beating that found for noble metals. In this communication, we report about the synthesis of a new, nanoporous, high-entropy alloy (HEA) possessing open porosity. The nanoporous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%) was fabricated from a precursor (TaMoNbV)(25)Ni-75 alloy (at%) by liquid metal dealloying using liquid magnesium (Mg). Directly after dealloying, the bicontinuous nanocomposite consisting of a Mg-rich phase and a phase with a bulk-centered cubic (bcc) structure was formed. The Mg-rich phase was removed with a 3M aqueous solution of nitric acid to obtain the open, porous, high-entropy Ta19.1Mo20.5Nb22.9V30Ni7.5 alloy (at%). The ligament size of this nanoporous HEA is about 69 +/- 9 nm, indicating the high surface area in this material.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 49 条
[1]  
Berger S.A., 2020, METALS
[2]  
Chen Q, 2013, NAT MATER, V12, P1102, DOI [10.1038/NMAT3741, 10.1038/nmat3741]
[3]  
Fukuzumi Y., 2015, SURFACE IMPROVEMENT, P93, DOI 10.1007/978-4-431-55192-8_8
[4]  
Geslin P., 2015, NAT COMMUN, V6, P1, DOI DOI 10.1038/NCOMMS9887
[5]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[6]   Porous graphite fabricated by liquid metal dealloying of silicon carbide [J].
Greenidge G. ;
Erlebacher J. .
Carbon, 2021, 165 :45-54
[7]   Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments [J].
Jin, Zeyu ;
Lv, Juan ;
Jia, Henglei ;
Liu, Weihong ;
Li, Huanglong ;
Chen, Zuhuang ;
Lin, Xi ;
Xie, Guoqiang ;
Liu, Xingjun ;
Sun, Shuhui ;
Qiu, Hua-Jun .
SMALL, 2019, 15 (47)
[8]   Transformation mechanisms and governing orientation relationships through selective dissolution of Ni via liquid metal dealloying from (FeCo)xNi100-x precursors [J].
Joo, Soo-Hyun ;
Kato, Hidemi .
MATERIALS & DESIGN, 2020, 185
[9]   Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design [J].
Joo, Soo-Hyun ;
Bae, Jae Wung ;
Park, Won-Young ;
Shimada, Yusuke ;
Wada, Takeshi ;
Kim, Hyoung Seop ;
Takeuchi, Akira ;
Konno, Toyohiko J. ;
Kato, Hidemi ;
Okulov, Ilya, V .
ADVANCED MATERIALS, 2020, 32 (06)
[10]   Development of porous FeCo by liquid metal dealloying: Evolution of porous morphology and effect of interaction between ligaments and melt [J].
Joo, Soo-Hyun ;
Wada, Takeshi ;
Kato, Hidemi .
MATERIALS & DESIGN, 2019, 180